Big Data
at the Department of Energy’s
Office of Science

2nd NIST Big Data Public Working Group Workshop
June 1, 2017

Laura Biven, PhD
Senior Science and Technology Advisor
Office of the Deputy Director for Science Programs
and Program Manager, Computer Science,
Advanced Scientific Computing Research
U.S. Department of Energy
Laura.Biven@science.doe.gov
Office of Science: Brief overview
Largest Supporter of Physical Sciences in the U.S.*

Research: 42%, $2.2B

~40% of Research to Universities

> 22,000 Scientists Supported

Funding at >300 Institutions including all 17 DOE Labs

Construction: 13.5%, $723M

Facility Operations: 38%, $2.02B

>33,000 Scientific Facility Users**

* 43% of all physical sciences, 30% of computer science and math

** from all 50 states and DC

Office of Science FY 2016: $5.35B

Slide from Dr. Murray
The Office of Science research portfolio

- **Advanced Scientific Computing Research**: Delivering world leading computational and networking capabilities to extend the frontiers of science and technology
- **Basic Energy Sciences**: Understanding, predicting, and ultimately controlling matter and energy flow at the electronic, atomic, and molecular levels
- **Biological and Environmental Research**: Understanding complex biological, climatic, and environmental systems
- **Fusion Energy Sciences**: Building the scientific foundations for a fusion energy source
- **High Energy Physics**: Understanding how the universe works at its most fundamental level
- **Nuclear Physics**: Discovering, exploring, and understanding all forms of nuclear matter
The DOE/SC Labs Today
Office of Science User Facilities

28 world-leading facilities serving over 33,000 researchers annually

- supercomputers,
- high intensity x-ray, neutron, and electron sources,
- nanoscience facilities,
- genomic sequencing facilities,
- particle accelerators,
- fusion/plasma physics facilities, and
- atmospheric monitoring capabilities.

- Open access; allocation determined through peer review of proposals
- Free for non-proprietary work published in the open literature
- Full cost recovery for proprietary work
Signatures of Big Data Challenges
Data-Intensive Science Drives Exponential Network Growth

Science Data Transferred Each Year, in PB (as of 6/2016)

ESnet Growth: ~70%/year

Internet Growth: (30 – 40%/year)
Single Light Source Data Flow
Triples NERSC’s Network Usage

From: Wed Feb 27 10:59:00 2013 To: Thu Mar 7 10:59:00 2013

Total traffic

All NERSC Traffic

Net IMPORTER of data

Photosystem II
X-ray Study

Single experiment triples data rate
Over 3,200 users performed research at two or more facilities in FY2016.
Big Data,
Big Changes in Science
Mission focus:
Synchrotron light source for imaging, scattering, and spectroscopy experiments in chemical, geological, life, material and physical sciences. Users come, do experiment, want to leave with data in hand.

Impediments/Gaps
• Increasing use of simulation to design experiments
• Increasing use of simulation to design science user facilities
• Changing science paradigm: Data too large for users to take home to analyze
• Data volume, rate exceed capacity and capability – need to use HPC to analyze data near-real time
• Desire to steer experiment’s data collection
• Diversity of science: one accelerator, O(40) beamlines, diverse experiments at each: no “one size fits all”
• New data vis/analysis methods
• Challenge: Usability & accessibility of computing, data

“...it is getting to the point where users cannot just download their data: their hard drive isn’t big enough, and if it was, they wouldn’t have adequate computing power to do anything with it.”
Data Driven Neutron Scientific Discovery Enabled by HPC

Data Base Generation
- Neutron modeling
- Experimental Neutron Data

Analysis and Learning
- Computational methods can be generated to identify material properties and anomalies from massive & expanding database

Scientific Discovery
- Scientific analysis and search tools providing access to massive database of diffuse scattering knowledge

Slide from Thomas Proffen’s presentation at SC’14
Computational Cosmology: Role of Simulations

- **Three Roles of Cosmological Simulations**
 - Basic theory of cosmological probes
 - Production of high-fidelity ‘mock skies’ for end-to-end tests of the observation/analysis chain
 - Essential component of analysis toolkits: Control systematics

- **Extreme Simulation and Analysis Challenges**
 - Large dynamic range simulations; control of subgrid modeling and feedback mechanisms
 - Design and implementation of complex analyses on large datasets; new fast (approximate) algorithms
 - Solution of large statistical inverse problems of scientific inference (many parameters, ~10-100) at the ~1% level

Slide from EXDAC presentation at SC’14
Convergence of Data and Compute

Figure 1: Science workflow for the comparison of a molecular dynamics simulation with a high-energy X-ray microscopy of the same material system includes three interrelated computational and experimental workflows.

Image from “The Future of Scientific Workflows”
https://science.energy.gov/~media/ascr/pdf/programdocuments/docs/workflows_final_report.pdf
Synergistic Challenges in Data-Intensive Science and Exascale Computing (ASCAC Report)
This new report discusses the natural synergies among the challenges facing data-intensive science and exascale computing, including the need for a new scientific workflow.

Data Crosscutting Requirements Review
In April 2013, a diverse group of researchers from the U.S. Department of Energy (DOE) scientific community assembled in Germantown, Maryland to assess data requirements associated with DOE-sponsored scientific facilities and large-scale experiments.

Management, Analysis, and Visualization of Experimental and Observational Data: The Convergence of Data and Computing
The purpose of this workshop...is to help the Advanced Scientific Computing Research (ASCR) and research community better understand needs related to the management, analysis, and visualization of experimental and observational data (EOD) collected and generated by experimental and observational science projects (EOS) at Office of Science user facilities.
The Future of Scientific Workflows (ASCR Workshop Report)
The mission of this workshop was to develop requirements for workflow methods and tools in a combined high-performance computing (HPC) and distributed-area instruments and computing (DAIC) work environment, in order to enable science applications to better manage their end-to-end data flow.
https://science.energy.gov/~media/ascr/pdf/programdocuments/docs/workflows_final_report.pdf

STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop
This report describes the discussions, outcomes, and conclusions from STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop – the second workshop in the STREAM series, held on March 22-23, 2016 in Tysons, VA. STREAM2016 focused on DOE applications, computational and experimental facilities, as well as software systems. The role of streaming and steering as a critical aspect of the linkage between experimental and computing facilities was pervasive throughout the workshop. Given the overlap in interests and challenges faced by industry, the workshop had significant presence from several major companies in this area.

Computing and Data Requirements in the Exascale Age
The DOE Office of Science brought together key computational domain scientists, and DOE planners and administrators to determine the requirements for an exascale ecosystem that includes computation, data analysis, software, workflows, HPC services, and the full-scale range of computer requirements needed to support forefront scientific research through 2025.
http://exascaleage.org/
Summary: Challenges

- Our ability to collect data far exceeds our ability to analyze and store data.
- Increasing difficulty, inability to gain knowledge from data.
- Critical streaming and steering needs at Scientific User Facilities.
- Workflows are becoming more complex, relying on distributed resources and multi-modal data.
- Convergence of data and computing: data- and computing-centric needs increasingly intertwined, symbiotic.