NIST Special Publication 1500-9r1

DRAFT NIST Big Data Interoperability Framework: Volume 8, Reference Architecture Interfaces

NIST Big Data Public Working Group
Reference Architecture Subgroup

Version 3
February 25, 2019
http://dx.doi.org/10.6028/---------

[image:]

[bookmark: _GoBack]NIST Special Publication 1500-9r1
Information Technology Laboratory

DRAFT NIST Big Data Interoperability Framework:
Volume 8, Reference Architecture Interfaces

Version 3

NIST Big Data Public Working Group (NBD-PWG)
Definitions and Taxonomies Subgroup
National Institute of Standards and Technology
Gaithersburg, MD 20899

This draft publication is available free of charge from:
http://dx.doi.org/10.6028/----------

February 2019

[image: http://physics.nist.gov/Images/doc.bw.gif]
U. S. Department of Commerce
Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology
Dr. Walter Copan Under Secretary of Commerce for Standards and Technology
 and NIST Director

National Institute of Standards and Technology (NIST) Special Publication 1500-9
115 pages (February 25, 2019)

NIST Special Publication series 1500 is intended to capture external perspectives related to NIST standards, measurement, and testing-related efforts. These external perspectives can come from industry, academia, government, and others. These reports are intended to document external perspectives and do not represent official NIST positions.

Certain commercial entities, equipment, or materials may be identified in this document to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.
There may be references in this publication to other publications currently under development by NIST in accordance with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, may be used by federal agencies even before the completion of such companion publications. Thus, until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For planning and transition purposes, federal agencies may wish to closely follow the development of these new publications by NIST.
Organizations are encouraged to review all publications during public comment periods and provide feedback to NIST. All NIST publications are available at http://www.nist.gov/publication-portal.cfm.

Comments on this publication may be submitted to Wo Chang

National Institute of Standards and Technology
Attn: Wo Chang, Information Technology Laboratory
100 Bureau Drive (Mail Stop 8900) Gaithersburg, MD 20899-8930
Email: SP1500comments@nist.gov

Reports on Computer Systems Technology
The Information Technology Laboratory (ITL) at NIST promotes the U.S. economy and public welfare by providing technical leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analyses to advance the development and productive use of information technology. ITL’s responsibilities include the development of management, administrative, technical, and physical standards and guidelines for the cost-effective security and privacy of other than national security-related information in federal information systems. This document reports on ITL’s research, guidance, and outreach efforts in Information Technology and its collaborative activities with industry, government, and academic organizations.

Abstract
This document summarizes interfaces that are instrumental for the interaction with Clouds, Containers, and High Performance Computing (HPC) systems to manage virtual clusters to support the NIST Big Data Reference Architecture (NBDRA). The REpresentational State Transfer (REST) paradigm is used to define these interfaces, allowing easy integration and adoption by a wide variety of frameworks.
Big Data is a term used to describe extensive datasets, primarily in the characteristics of volume, variety, velocity, and/or variability. While opportunities exist with Big Data, the data characteristics can overwhelm traditional technical approaches, and the growth of data is outpacing scientific and technological advances in data analytics. To advance progress in Big Data, the NIST Big Data Public Working Group (NBD-PWG) is working to develop consensus on important fundamental concepts related to Big Data. The results are reported in the NIST Big Data Interoperability Framework (NBDIF) series of volumes. This volume, Volume 8, uses the work performed by the NBD-PWG to identify objects instrumental for the NIST Big Data Reference Architecture (NBDRA) which is introduced in the NBDIF: Volume 6, Reference Architecture.

Keywords
Adoption; barriers; implementation; interfaces; market maturity; organizational maturity; project maturity; system modernization.

Acknowledgements
This document reflects the contributions and discussions by the membership of the NBD-PWG, cochaired by Wo Chang (NIST ITL), Bob Marcus (ET-Strategies), and Chaitan Baru (San Diego Supercomputer Center; National Science Foundation). For all versions, the Subgroups were led by the following people: Nancy Grady (SAIC), Natasha Balac (San Diego Supercomputer Center), and Eugene Luster (R2AD) for the Definitions and Taxonomies Subgroup; Geoffrey Fox (Indiana University) and Tsegereda Beyene (Cisco Systems) for the Use Cases and Requirements Subgroup; Arnab Roy (Fujitsu), Mark Underwood (Krypton Brothers; Synchrony Financial), and Akhil Manchanda (GE) for the Security and Privacy Subgroup; David Boyd (InCadence Strategic Solutions), Orit Levin (Microsoft), Don Krapohl (Augmented Intelligence), and James Ketner (AT&T) for the Reference Architecture Subgroup; and Russell Reinsch (Center for Government Interoperability), David Boyd (InCadence Strategic Solutions), Carl Buffington (Vistronix), and Dan McClary (Oracle), for the Standards Roadmap Subgroup.
The editors for this document were the following:
Version 1: This volume resulted from Stage 2 work and was not part of the Version 1 scope.
Version 2: Gregor von Laszewski (Indiana University) and Wo Chang (NIST).
Version3: Gregor von Laszewski (Indiana University) and Wo Chang (NIST).
Laurie Aldape (Energetics Incorporated) and Elizabeth Lennon (NIST) provided editorial assistance across all NBDIF volumes.
NIST SP 1500-9, Draft NIST Big Data Interoperability Framework: Volume 8, Reference Architecture Interfaces, Version 2 has been collaboratively authored by the NBD-PWG. As of the date of publication, there are over six hundred NBD-PWG participants from industry, academia, and government. Federal agency participants include the National Archives and Records Administration (NARA), National Aeronautics and Space Administration (NASA), National Science Foundation (NSF), and the U.S. Departments of Agriculture, Commerce, Defense, Energy, Census, Health and Human Services, Homeland Security, Transportation, Treasury, and Veterans Affairs.
NIST would like to acknowledge the specific contributions[footnoteRef:1] to this volume, during Version 1, Version 2, and/or Version 3 activities, by the following NBD-PWG members: [1: “Contributors” are members of the NIST Big Data Public Working Group who dedicated great effort to prepare and gave substantial time on a regular basis to research and development in support of this document.]

	Wo Chang
National Institute of Standard and Technology
Geoffrey C. Fox
Indiana University
Pratik Thakkar
Philips
Gregor von Laszewski
Indiana University
	Badi Abdhul Wahid
Indiana University
Fugang Wang
Indiana University
Robert C. Whetsel
DISA/NBIS
Alicia Zuniga-Alvarado
Consultant

DRAFT NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 8, REFERENCE ARCHITECTURE INTERFACES

iv
Table of Contents
Executive Summary	viii
1	Introduction	1
1.1	Background	1
1.2	Scope and Objectives of the Reference Architectures Subgroup	3
1.3	Report Production	3
1.4	Report Structure	4
2	NBDRA Interface Requirements	5
2.1	High-Level Requirements of the Interface Approach	6
2.1.1	Technology- and Vendor-Agnostic	6
2.1.2	Support of Plug-In Compute Infrastructure	6
2.1.3	Orchestration of Infrastructure and Services	7
2.1.4	Orchestration of Big Data Applications and Experiments	7
2.1.5	Reusability	7
2.1.6	Execution Workloads	7
2.1.7	Security and Privacy Fabric Requirements	7
2.2	Component-Specific Interface Requirements	8
2.2.1	System Orchestrator Interface Requirements	8
2.2.2	Data Provider Interface Requirements	9
2.2.3	Data Consumer Interface Requirements	9
2.2.4	Big Data Application Interface Provider Requirements	9
2.2.5	Big Data Provider Framework Interface Requirements	11
2.2.6	Big Data Application Provider to Big Data Framework Provider Interface	12
3	Specification Paradigm	13
3.1	Hybrid and Multiple Frameworks	13
3.2	Design by Resource-Oriented Architecture	13
3.3	Design by Example	13
3.4	Version Management	13
3.5	Interface Compliancy	13
4	Example Specification	15
4.1	List of specifications	15
4.2	Identity	17
4.2.1	Authentication	17
4.2.2	Organization	18
4.2.3	User	21
4.2.4	PublicKeyStore	25
4.3	General Resources	28
4.3.1	Timestamp	28
4.3.2	Alias	30
4.3.3	Variables	33
4.3.4	Keyvaluestore	35
4.3.5	Default	38
4.4	Data Management	41
4.4.1	File	41
4.4.2	Replica	43
4.4.3	Database	46
4.4.4	Virtual Directory	49
4.5	Compute Management - Virtual Clusters	52
4.5.1	Virtual Cluster	52
4.5.2	Scheduler	57
4.6	Compute Management - Virtual Machines	60
4.6.1	Image	60
4.6.2	Flavor	63
4.6.3	VM	67
4.6.4	Secgroup	69
4.6.5	Nic	75
4.7	Compute Management - Containers	78
4.7.1	Containers	78
4.8	Compute Management - Functions	81
4.8.1	Microservice	81
4.9	Batch Processing	83
4.9.1	Batchjob	83
4.9.2	Slurmjob	86
4.10	Reservation	89
4.10.1	Reservation	89
4.11	Data Streams	92
4.11.1	Stream	92
4.11.2	Filter	95
4.12	MapReduce	97
4.12.1	Hadoop	97
4.13	Deployment	100
4.13.1	Deployment	100
5	Status Codes and Error Responses	104
Appendix A: Acronyms and Terms	105
Appendix B: Bibliography	107

Figures
Figure 1: NIST Big Data Reference Architecture (NBDRA)	5
Figure 2: Provider view	16
Figure 3: Resource view	17

Tables
Table 1: List of Specifications	15
Table 2: HTTP Response Codes	104

[bookmark: _Toc1640987]Executive Summary
The NIST Big Data Interoperability Framework (NBDIF): Volume 8, Reference Architecture Interfaces document was prepared by the NIST Big Data Public Working Group (NBD-PWG) Reference Architecture Subgroup to identify interfaces in support of the NIST Big Data Reference Architecture (NBDRA) The interfaces contain two different aspects:
The definition of resources that are part of the NBDRA. These resources are formulated in JavaScript Object Notation (JSON) format and can be easily integrated into a REpresentational State Transfer (REST) framework or an object-based framework.
The definition of simple interface use cases that allow us to illustrate the usefulness of the resources defined.
The resources were categorized in groups that are identified by the NBDRA set forward in the NBDIF: Volume 6, Reference Architecture document. While the NBDIF: Volume 3, Use Cases and General Requirements document provides application-oriented high-level use cases, the use cases defined in this document are subsets of them and focus on interface use cases. The interface use cases are not meant to be complete examples, but showcase why the resource has been defined. Hence, the interfaces use cases are only representative, and do not encompass the entire spectrum of Big Data usage. All the interfaces were openly discussed in the working group. Additions to the interfaces are welcome and the NBD-PWG is open to discuss any contributions.
The NIST Big Data Interoperability Framework consists of nine volumes, each of which addresses a specific key topic, resulting from the work of the NBD-PWG. The nine volumes are as follows:
Volume 1: Definitions [1]
Volume 2: Taxonomies [2]
Volume 3: Use Cases and General Requirements [3]
Volume 4: Security and Privacy [4]
Volume 5: Architectures White Paper Survey [5]
Volume 6: Reference Architecture [6]
Volume 7: Standards Roadmap [7]
Volume 8: Reference Architecture Interfaces (this volume)
Volume 9: Adoption and Modernization [8]
The NBDIF will be released in three versions, which correspond to the three development stages of the NBD-PWG work. The three stages aim to achieve the following with respect to the NBDRA.
Stage 1. Identify the high-level Big Data reference architecture key components, which are technology-, infrastructure-, and vendor-agnostic.
Stage 2. Define general interfaces between the NBDRA components.
Stage 3. Validate the NBDRA by building Big Data general applications through the general interfaces.
This document is the result of Stage 3 work of the NBD-PWG. Coordination of the group is conducted on the NBD-PWG web page (https://bigdatawg.nist.gov).

[bookmark: sec:introduction][bookmark: _Toc1569538][bookmark: _Toc1640988]Introduction
[bookmark: background][bookmark: _Toc1569539][bookmark: _Toc1640989]Background
There is broad agreement among commercial, academic, and government leaders about the remarkable potential of Big Data to spark innovation, fuel commerce, and drive progress. Big Data is the common term used to describe the deluge of data in today’s networked, digitized, sensor-laden, and information-driven world. The availability of vast data resources carries the potential to answer questions previously out of reach, including the following:
How can a potential pandemic reliably be detected early enough to intervene?
Can new materials with advanced properties be predicted before these materials have ever been synthesized?
How can the current advantage of the attacker over the defender in guarding against cybersecurity threats be reversed?
There is also broad agreement on the ability of Big Data to overwhelm traditional approaches. The growth rates for data volumes, speeds, and complexity are outpacing scientific and technological advances in data analytics, management, transport, and data user spheres.
Despite widespread agreement on the inherent opportunities and current limitations of Big Data, a lack of consensus on some important fundamental questions continues to confuse potential users and stymie progress. These questions include the following:
How is Big Data defined?
What attributes define Big Data solutions?
What is new in Big Data?
What is the difference between Big Data and bigger data that has been collected for years?
How is Big Data different from traditional data environments and related applications?
What are the essential characteristics of Big Data environments?
How do these environments integrate with currently deployed architectures?
What are the central scientific, technological, and standardization challenges that need to be addressed to accelerate the deployment of robust, secure Big Data solutions?
Within this context, on March 29, 2012, the White House announced the Big Data Research and Development Initiative (The White House Office of Science and Technology Policy, “Big Data is a Big Deal,” OSTP Blog, accessed February 21, 2014 [9]. The initiative’s goals include helping to accelerate the pace of discovery in science and engineering, strengthening national security, and transforming teaching and learning by improving analysts’ ability to extract knowledge and insights from large and complex collections of digital data.
Six federal departments and their agencies announced more than $200 million in commitments spread across more than 80 projects, which aim to significantly improve the tools and techniques needed to access, organize, and draw conclusions from huge volumes of digital data. The initiative also challenged industry, research universities, and nonprofits to join with the federal government to make the most of the opportunities created by Big Data.
Motivated by the White House initiative and public suggestions, the National Institute of Standards and Technology (NIST) accepted the challenge to stimulate collaboration among industry professionals to further the secure and effective adoption of Big Data. As a result of NIST’s Cloud and Big Data Forum held on January 15–17, 2013, there was strong encouragement for NIST to create a public working group for the development of a Big Data Standards Roadmap. Forum participants noted that this roadmap should define and prioritize Big Data requirements, including interoperability, portability, reusability, extensibility, data usage, analytics, and technology infrastructure. In doing so, the roadmap would accelerate the adoption of the most secure and effective Big Data techniques and technology.
On June 19, 2013, the NIST Big Data Public Working Group (NBD-PWG) was launched with extensive participation by industry, academia, and government from across the nation. The scope of the NBD-PWG involves forming a community of interests from all sectors—including industry, academia, and government—with the goal of developing consensus on definitions, taxonomies, secure reference architectures, security and privacy, and, from these, a standards roadmap. Such a consensus would create a vendor-neutral, technology- and infrastructure-independent framework that would enable Big Data stakeholders to identify and use the best analytics tools for their processing and visualization requirements on the most suitable computing platform and cluster, while also allowing added value from Big Data service providers.
The NIST Big Data Interoperability Framework (NBDIF) will be released in three versions, which correspond to the three stages of the NBD-PWG work. The three stages aim to achieve the following with respect to the NIST Big Data Reference Architecture (NBDRA).
Stage 1: Identify the high-level Big Data reference architecture key components, which are technology, infrastructure, and vendor agnostic.
Stage 2: Define general interfaces between the NBDRA components.
Stage 3: Validate the NBDRA by building Big Data general applications through the general interfaces.
On September 16, 2015, seven NBDIF Version 1 volumes were published (http://bigdatawg.nist.gov/V1_output_docs.php), each of which addresses a specific key topic, resulting from the work of the NBD-PWG. The seven volumes are as follows:
Volume 1, Definitions [1]
Volume 2, Taxonomies [2]
Volume 3, Use Cases and General Requirements [3]
Volume 4, Security and Privacy [4]
Volume 5, Architectures White Paper Survey [5]
Volume 6, Reference Architecture [6]
Volume 7, Standards Roadmap [7]
The NBD-PWG worked on Stage 2 with the goals to enhance the Version 1 content, define general interfaces between the NBDRA components by aggregating low-level interactions into high-level general interfaces, and demonstrate how the NBDRA can be used. As a result of the Stage 2 work, the following two additional NBDIF volumes were developed.
Volume 8, Reference Architecture Interfaces (this volume)
Volume 9, Adoption and Modernization [8]
Version 2 of the NBDIF volumes, resulting from Stage 2 work, can be downloaded from the NBD-PWG website (https://bigdatawg.nist.gov/V2_output_docs.php). The current effort documented in this volume reflects concepts developed within the rapidly evolving field of Big Data.
[bookmark: X004b886bb90d787f1739ae86236aaa6892ce7db][bookmark: _Toc1569540][bookmark: _Toc1640990]Scope and Objectives of the Reference Architectures Subgroup
Reference architectures provide “an authoritative source of information about a specific subject area that guides and constrains the instantiations of multiple architectures and solutions” [10]. Reference architectures generally serve as a foundation for solution architectures and may also be used for comparison and alignment of instantiations of architectures and solutions.
The goal of the NBD-PWG Reference Architecture Subgroup is to develop an open reference architecture for Big Data that achieves the following objectives:
Provides a common language for the various stakeholders;
Encourages adherence to common standards, specifications, and patterns;
Provides consistent methods for implementation of technology to solve similar problem sets;
Illustrates and improves understanding of the various Big Data components, processes, and systems, in the context of a vendor- and technology-agnostic Big Data conceptual model;
Provides a technical reference for U.S. government departments, agencies, and other consumers to understand, discuss, categorize, and compare Big Data solutions; and
Facilitates analysis of candidate standards for interoperability, portability, reusability, and extendibility.
The NBDRA is a high-level conceptual model crafted to serve as a tool to facilitate open discussion of the requirements, design structures, and operations inherent in Big Data. The NBDRA is intended to facilitate the understanding of the operational intricacies in Big Data. It does not represent the system architecture of a specific Big Data system, but rather is a tool for describing, discussing, and developing system-specific architectures using a common framework of reference. The model is not tied to any specific vendor products, services, or reference implementation, nor does it define prescriptive solutions that inhibit innovation.
The NBDRA does not address the following:
Detailed specifications for any organization’s operational systems;
Detailed specifications of information exchanges or services; and
Recommendations or standards for integration of infrastructure products.
The goals of the Subgroup were realized throughout the three planned phases of the NBD-PWG work, as outlined in Section 1.3.
[bookmark: sec:production][bookmark: _Toc1569541][bookmark: _Toc1640991]Report Production
The NBDIF: Volume 8, References Architecture Interfaces is one of nine volumes, whose overall aims are to define and prioritize Big Data requirements, including interoperability, portability, reusability, extensibility, data usage, analytic techniques, and technology infrastructure to support secure and effective adoption of Big Data. The overall goals of this volume are to define and specify interfaces to implement the Big Data Reference Architecture. This volume arose from discussions during the weekly NBD-PWG conference calls. Topics included in this volume began to take form in Phase 2 of the NBD-PWG work. During the discussions, the NBD-PWG identified the need to specify a variety of interfaces.
Phase 3 work, which built upon the groundwork developed during Phase 2, included an early specification based on resource object specifications that provided a simplified version of an API interface design. To achieve technical and high-quality document content, this document will go through a public comment period along with NIST internal review.
The following milestone were achieved in the versions produced listed below:
Version 2.1: A previous volume used just the definition of the schema based on examples. It was easier to read but only included the definition of the resources and not the interaction with the resources. This volume was in place until June 2018.
Version 2.2: This version was significantly changed and now uses OpenAPI to specify the Interfaces between the various services and components.
Version 3.1.0: The version includes the significant improvements of the object specifications.
[bookmark: report-structure][bookmark: _Toc1569542][bookmark: _Toc1640992]Report Structure
To enable interoperability between the NBDRA components, a list of well-defined NBDRA interfaces is needed. These interfaces are documented in this volume. To introduce them, the NBDRA structure will be followed, focusing on interfaces that allow bootstrapping of the NBDRA. The document begins with a summary of requirements that will be integrated into our specifications. Subsequently, each section will introduce a number of objects that build the core of the interface addressing a specific aspect of the NBDRA. A selected number of interface use cases will be showcased to outline how the specific interface can be used in a reference implementation of the NBDRA. Validation of this approach can be achieved while applying it to the application use cases that have been gathered in the NBDIF: Volume 3, Use Cases and Requirements document. These application use cases have considerably contributed towards the design of the NBDRA. Hence the expectation is that: (1) the interfaces can be used to help implement a Big Data architecture for a specific use case; and (2) the proper implementation. This approach can facilitate subsequent analysis and comparison of the use cases.
The organization of this document roughly corresponds to the process used by the NBD-PWG to develop the interfaces. Following the introductory material presented in Section 1, the remainder of this document is organized as follows:
Section 2 presents the interface requirements;
Section 3 presents the specification paradign the we use;
Section 4 presents several objects grouped by functional use while providing a summary table of selected proposed objects in Section 4.1.

[bookmark: sec:interface-requirements][bookmark: _Toc1569543]
107
[bookmark: _Toc1640993]NBDRA Interface Requirements
The development of a Big Data reference architecture requires a thorough understanding of current techniques, issues, and concerns. To this end, the NBD-PWG collected use cases to gain an understanding of current applications of Big Data, conducted a survey of reference architectures to understand commonalities within Big Data architectures in use, developed a taxonomy to understand and organize the information collected, and reviewed existing technologies and trends relevant to Big Data. The results of these NBD-PWG activities were used in the development of the NBDRA (Figure 1) and the interfaces presented herein. Detailed descriptions of these activities can be found in the other volumes of the NBDIF.
[image:]
[bookmark: _Toc1606007][bookmark: _Toc1606149][bookmark: _Toc1606288][bookmark: _Toc1606342][bookmark: _Toc1641061]Figure 1: NIST Big Data Reference Architecture (NBDRA)
This vendor-neutral, technology- and infrastructure-agnostic conceptual model, the NBDRA, is shown in Figure 1 and represents a Big Data system composed of five logical functional components connected by interoperability interfaces (i.e., services). Two fabrics envelop the components, representing the interwoven nature of management and security and privacy with all five of the components. These two fabrics provide services and functionality to the five main roles in the areas specific to Big Data and are crucial to any Big Data solution. Note: None of the terminology or diagrams in these documents is intended to be normative or to imply any business or deployment model. The terms provider and consumer as used are descriptive of general roles and are meant to be informative in nature.
The NBDRA is organized around five major roles and multiple sub-roles aligned along two axes representing the two Big Data value chains: the Information Value (horizontal axis) and the Information Technology (IT; vertical axis). Along the Information Value axis, the value is created by data collection, integration, analysis, and applying the results following the value chain. Along the IT axis, the value is created by providing networking, infrastructure, platforms, application tools, and other IT services for hosting of and operating the Big Data in support of required data applications. At the intersection of both axes is the Big Data Application Provider role, indicating that data analytics and its implementation provide the value to Big Data stakeholders in both value chains. The term provider as part of the Big Data Application Provider and Big Data Framework Provider is there to indicate that those roles provide or implement specific activities and functions within the system. It does not designate a service model or business entity.
The DATA arrows in Figure 1 show the flow of data between the system’s main roles. Data flows between the roles either physically (i.e., by value) or by providing its location and the means to access it (i.e., by reference). The SW arrows show transfer of software tools for processing of Big Data in situ. The Service Use arrows represent software programmable interfaces. While the main focus of the NBDRA is to represent the run-time environment, all three types of communications or transactions can happen in the configuration phase as well. Manual agreements (e.g., service-level agreements) and human interactions that may exist throughout the system are not shown in the NBDRA.
Detailed information on the NBDRA conceptual model is presented in the NBDIF: Volume 6, Reference Architecture document.
Prior to outlining the specific interfaces, general requirements are introduced and the interfaces are defined.
[bookmark: X88b6bb88472646d064238626fb47a75c22e48cc][bookmark: _Toc1569544][bookmark: _Toc1640994]High-Level Requirements of the Interface Approach
This section focuses on the high-level requirements of the interface approach that are needed to implement the reference architecture depicted in Figure 1.
[bookmark: technology--and-vendor-agnostic][bookmark: _Toc1569545][bookmark: _Toc1640995]Technology- and Vendor-Agnostic
Due to the many different tools, services, and infrastructures available in the general area of Big Data, an interface ought to be as vendor-independent as possible, while, at the same time, be able to leverage best practices. Hence, a methodology is needed that allows extension of interfaces to adapt and leverage existing approaches, but also allows the interfaces to provide merit in easy specifications that assist the formulation and definition of the NBDRA.
[bookmark: X03e9e806a86c5220ec886afd680a4d5ddd5bfb9][bookmark: _Toc1569546][bookmark: _Toc1640996]Support of Plug-In Compute Infrastructure
As Big Data is not just about hosting data, but about analyzing data, the interfaces provided herein must encapsulate a rich infrastructure environment that is used by data scientists. This includes the ability to integrate (or plug-in) various compute resources and services to provide the necessary compute power to analyze the data. These resources and services include the following:
Access to hierarchy of compute resources from the laptop/desktop, servers, data clusters, and clouds;
The ability to integrate special-purpose hardware such as graphics processing units (GPUs) and field-programmable gate arrays (FPGAs) that are used in accelerated analysis of data; and
The integration of services including microservices that allow the analysis of the data by delegating them to hosted or dynamically deployed services on the infrastructure of choice.
[bookmark: X81cf4fafd86096c030a1f6976d39b6478c590eb][bookmark: _Toc1569547][bookmark: _Toc1640997]Orchestration of Infrastructure and Services
From review of the use case collection, presented in the NBDIF: Volume 3, Use Cases and General Requirements document [4], the need arose to address the mechanism of preparing suitable infrastructures for various use cases. As not every infrastructure is suited for every use case, a custom infrastructure may be needed. As such, this document is not attempting to deliver a single deployed NBDRA, but allow the setup of an infrastructure that satisfies the particular use case. To achieve this task, it is necessary to provision software stacks and services while orchestrating their deployment and leveraging infrastructures. It is not the focus of this document to replace existing orchestration software and services, but provide an interface to them to leverage them as part of defining and creating the infrastructure. Various orchestration frameworks and services could therefore be leveraged, even as part of the same framework, and work in orchestrated fashion to achieve the goal of preparing an infrastructure suitable for one or more applications.
[bookmark: X9c019b5457ae5ae59b90e2db297ffc505326c93][bookmark: _Toc1569548][bookmark: _Toc1640998]Orchestration of Big Data Applications and Experiments
The creation of the infrastructure suitable for Big Data applications provides the basic computing environment. However, Big Data applications may require the creation of sophisticated applications as part of interactive experiments to analyze and probe the data. For this purpose, the applications must be able to orchestrate and interact with experiments conducted on the data while assuring reproducibility and correctness of the data. For this purpose, a System Orchestrator (either the data scientists or a service acting on behalf of the data scientist) is used as the command center to interact on behalf of the Big Data Application Provider to orchestrate dataflow from Data Provider, carry out the Big Data application life cycle with the help of the Big Data Framework Provider, and enable the Data Consumer to consume Big Data processing results. An interface is needed to describe these interactions and to allow leveraging of experiment management frameworks in scripted fashion. A customization of parameters is needed on several levels. On the highest level, application-motivated parameters are needed to drive the orchestration of the experiment. On lower levels, these high-level parameters may drive and create service-level agreements, augmented specifications, and parameters that could even lead to the orchestration of infrastructure and services to satisfy experiment needs.
[bookmark: reusability][bookmark: _Toc1569549][bookmark: _Toc1640999]Reusability
The interfaces provided must encourage reusability of the infrastructure, services, and experiments described by them. This includes (1) reusability of available analytics packages and services for adoption; (2) deployment of customizable analytics tools and services; and (3) operational adjustments that allow the services and infrastructure to be adapted while at the same time allowing for reproducible experiment execution.
[bookmark: execution-workloads][bookmark: _Toc1569550][bookmark: _Toc1641000]Execution Workloads
One of the important aspects of distributed Big Data services can be that the data served is simply too big to be moved to a different location. Instead, an interface could allow the description and packaging of analytics algorithms, and potentially also tools, as a payload to a data service. This can be best achieved, not by sending the detailed execution, but by sending an interface description that describes how such an algorithm or tool can be created on the server and be executed under security considerations (integrated with authentication and authorization in mind).
[bookmark: security-and-privacy-fabric-requirements][bookmark: _Toc1569551][bookmark: _Toc1641001]Security and Privacy Fabric Requirements
Although the focus of this document is not security and privacy, which are documented in the NBDIF: Volume 4, Security and Privacy [8], the interfaces defined herein must be capable of integration into a secure reference architecture that supports secure execution, secure data transfer, and privacy. Consequently, the interfaces defined herein can be augmented with frameworks and solutions that provide such mechanisms. Thus, diverse requirement needs stemming from different use cases addressing security need to be distinguished. To contrast that the security requirements between applications can vary drastically, the following example is provided. Although many of the interfaces and their objects to support Big Data applications in physics are similar to those in healthcare, they differ in the integration of security interfaces and policies. While in physics the protection of data is less of an issue, it is a stringent requirement in healthcare. Thus, deriving architectural frameworks for both may use largely similar components, but addressing security issues will be very different. The security of interfaces may be addressed in other documents. In this document, they are considered an advanced use case showcasing that the validity of the specifications introduced here is preserved, even if security and privacy requirements differ vastly among application use cases.
[bookmark: X1e329653acf6a0cfcf796c9488266fb7bc11b34][bookmark: _Toc1569552][bookmark: _Toc1641002]Component-Specific Interface Requirements
This section summarizes the requirements for the interfaces of the NBDRA components. The five components are listed in Figure 1 and addressed in Section 2.2.1 (System Orchestrator Interface Requirements) and Section 2.2.4 (Big Data Application Provider to Big Data Framework Provider Interface) of this document. The five main functional components of the NBDRA represent the different technical roles within a Big Data system and are the following:
System Orchestrator: Defines and integrates the required data application activities into an operational vertical system (see Section 2.2.1);
Data Provider: Introduces new data or information feeds into the Big Data system (see Section 2.2.2);
Data Consumer: Includes end users or other systems that use the results of the Big Data Application Provider (see Section 2.2.3);
Big Data Application Provider: Executes a data life cycle to meet security and privacy requirements as well as System Orchestrator-defined requirements (see Section 2.2.4);
Big Data Framework Provider: Establishes a computing framework in which to execute certain transformation applications while protecting the privacy and integrity of data (see Section 2.2.5); and
Big Data Application Provider to Framework Provider Interface: Defines an interface between the application specification and the provider (see Section 2.2.6).
[bookmark: sec:system-orchestrator-requirements][bookmark: _Toc1569553][bookmark: _Toc1641003]System Orchestrator Interface Requirements
The System Orchestrator role includes defining and integrating the required data application activities into an operational vertical system. Typically, the System Orchestrator involves a collection of more specific roles, performed by one or more actors, which manage and orchestrate the operation of the Big Data system. These actors may be human components, software components, or some combination of the two. The function of the System Orchestrator is to configure and manage the other components of the Big Data architecture to implement one or more workloads that the architecture is designed to execute. The workloads managed by the System Orchestrator may be assigning/provisioning framework components to individual physical or virtual nodes at the lower level, or providing a graphical user interface that supports the specification of workflows linking together multiple applications and components at the higher level. The System Orchestrator may also, through the Management Fabric, monitor the workloads and system to confirm that specific quality of service requirements is met for each workload, and may elastically assign and provision additional physical or virtual resources to meet workload requirements resulting from changes/surges in the data or number of users/transactions. The interface to the System Orchestrator must be capable of specifying the task of orchestration the deployment, configuration, and the execution of applications within the NBDRA. A simple vendor-neutral specification to coordinate the various parts either as simple parallel language tasks or as a workflow specification is needed to facilitate the overall coordination. Integration of existing tools and services into the System Orchestrator as extensible interfaces is desirable.
[bookmark: sec:data-provider-requirements][bookmark: _Toc1569554][bookmark: _Toc1641004]Data Provider Interface Requirements
The Data Provider role introduces new data or information feeds into the Big Data system for discovery, access, and transformation by the Big Data system. New data feeds are distinct from the data already in use by the system and residing in the various system repositories. Similar technologies can be used to access both new data feeds and existing data. The Data Provider actors can be anything from a sensor, to a human inputting data manually, to another Big Data system. Interfaces for data providers must be able to specify a data provider so it can be located by a data consumer. It also must include enough details to identify the services offered so they can be pragmatically reused by consumers. Interfaces to describe pipes and filters must be addressed.
[bookmark: sec:data-consumer-requirements][bookmark: _Toc1569555][bookmark: _Toc1641005]Data Consumer Interface Requirements
Like the Data Provider, the role of Data Consumer within the NBDRA can be an actual end user or another system. In many ways, this role is the mirror image of the Data Provider, with the entire Big Data framework appearing like a Data Provider to the Data Consumer. The activities associated with the Data Consumer role include the following:
Search and Retrieve,
Download,
Analyze Locally,
Reporting,
Visualization, and
Data to Use for Their Own Processes.
The interface for the data consumer must be able to describe the consuming services and how they retrieve information or leverage data consumers.
[bookmark: sec:data-application-requirements][bookmark: _Toc1569556][bookmark: _Toc1641006]Big Data Application Interface Provider Requirements
The Big Data Application Provider role executes a specific set of operations along the data life cycle to meet the requirements established by the System Orchestrator, as well as meeting security and privacy requirements. The Big Data Application Provider is the architecture component that encapsulates the business logic and functionality to be executed by the architecture. The interfaces to describe Big Data applications include interfaces for the various subcomponents including collections, preparation/curation, analytics, visualization, and access. Some of the interfaces used in these subcomponents can be reused from other interfaces, which are introduced in other sections of this document. Where appropriate, application-specific interfaces will be identified and examples provided with a focus on use cases as identified in the NBDIF: Volume 3, Use Cases and General Requirements.
[bookmark: collection]Collection
In general, the collection activity of the Big Data Application Provider handles the interface with the Data Provider. This may be a general service, such as a file server or web server configured by the System Orchestrator to accept or perform specific collections of data, or it may be an application-specific service designed to pull data or receive pushes of data from the Data Provider. Since this activity is receiving data at a minimum, it must store/buffer the received data until it is persisted through the Big Data Framework Provider. This persistence need not be to physical media but may simply be to an in-memory queue or other service provided by the processing frameworks of the Big Data Framework Provider. The collection activity is likely where the extraction portion of the Extract, Transform, Load (ETL)/Extract, Load, Transform (ELT) cycle is performed. At the initial collection stage, sets of data (e.g., data records) of similar structure are collected (and combined), resulting in uniform security, policy, and other considerations. Initial metadata is created (e.g., subjects with keys are identified) to facilitate subsequent aggregation or look-up methods.
[bookmark: preparation]Preparation
The preparation activity is where the transformation portion of the ETL/ELT cycle is likely performed, although analytics activity will also likely perform advanced parts of the transformation. Tasks performed by this activity could include data validation (e.g., checksums/hashes, format checks), cleansing (e.g., eliminating bad records/fields), outlier removal, standardization, reformatting, or encapsulating. This activity is also where source data will frequently be persisted to archive storage in the Big Data Framework Provider and provenance data will be verified or attached/associated. Verification or attachment may include optimization of data through manipulations (e.g., deduplication) and indexing to optimize the analytics process. This activity may also aggregate data from different Data Providers, leveraging metadata keys to create an expanded and enhanced data set.
[bookmark: analytics]Analytics
The analytics activity of the Big Data Application Provider includes the encoding of the low-level business logic of the Big Data system (with higher-level business process logic being encoded by the System Orchestrator). The activity implements the techniques to extract knowledge from the data based on the requirements of the vertical application. The requirements specify the data processing algorithms to produce new insights that will address the technical goal. The analytics activity will leverage the processing frameworks to implement the associated logic. This typically involves the activity providing software that implements the analytic logic to the batch and/or streaming elements of the processing framework for execution. The messaging/communication framework of the Big Data Framework Provider may be used to pass data or control functions to the application logic running in the processing frameworks. The analytic logic may be broken up into multiple modules to be executed by the processing frameworks which communicate, through the messaging/communication framework, with each other and other functions instantiated by the Big Data Application Provider.
[bookmark: visualization]Visualization
The visualization activity of the Big Data Application Provider prepares elements of the processed data and the output of the analytic activity for presentation to the Data Consumer. The objective of this activity is to format and present data in such a way as to optimally communicate meaning and knowledge. The visualization preparation may involve producing a text-based report or rendering the analytic results as some form of graphic. The resulting output may be a static visualization and may simply be stored through the Big Data Framework Provider for later access. However, the visualization activity frequently interacts with the access activity, the analytics activity, and the Big Data Framework Provider (processing and platform) to provide interactive visualization of the data to the Data Consumer based on parameters provided to the access activity by the Data Consumer. The visualization activity may be completely application-implemented, leverage one or more application libraries, or may use specialized visualization processing frameworks within the Big Data Framework Provider.
[bookmark: access]Access
The access activity within the Big Data Application Provider is focused on the communication/interaction with the Data Consumer. Like the collection activity, the access activity may be a generic service such as a web server or application server that is configured by the System Orchestrator to handle specific requests from the Data Consumer. This activity would interface with the visualization and analytic activities to respond to requests from the Data Consumer (who may be a person) and uses the processing and platform frameworks to retrieve data to respond to Data Consumer requests. In addition, the access activity confirms that descriptive and administrative metadata and metadata schemes are captured and maintained for access by the Data Consumer and as data is transferred to the Data Consumer. The interface with the Data Consumer may be synchronous or asynchronous in nature and may use a pull or push paradigm for data transfer.
[bookmark: sec:provider-requirements][bookmark: _Toc1569557][bookmark: _Toc1641007]Big Data Provider Framework Interface Requirements
Data for Big Data applications are delivered through data providers. They can be either local providers, data contributed by a user, or distributed data providers, data on the Internet. This interface must be able to provide the following functionality:
Interfaces to files,
Interfaces to virtual data directories,
Interfaces to data streams, and
Interfaces to data filters.
[bookmark: infrastructures-interface-requirements]Infrastructures Interface Requirements
This Big Data Framework Provider element provides all the resources necessary to host/run the activities of the other components of the Big Data system. Typically, these resources consist of some combination of physical resources, which may host/support similar virtual resources. The NBDRA needs interfaces that can be used to deal with the underlying infrastructure to address networking, computing, and storage.
[bookmark: platforms-interface-requirements]Platforms Interface Requirements
As part of the NBDRA platforms, interfaces are needed that can address platform needs and services for data organization, data distribution, indexed storage, and file systems.
[bookmark: processing-interface-requirements]Processing Interface Requirements
The processing frameworks for Big Data provide the necessary infrastructure software to support implementation of applications that can deal with the volume, velocity, variety, and variability of data. Processing frameworks define how the computation and processing of the data is organized. Big Data applications rely on various platforms and technologies to meet the challenges of scalable data analytics and operation. A requirement is the ability to interface easily with computing services that offer specific analytics services, batch processing capabilities, interactive analysis, and data streaming.
[bookmark: crosscutting-interface-requirements]Crosscutting Interface Requirements
Several crosscutting interface requirements within the Big Data Framework Provider include messaging, communication, and resource management. Often these services may be hidden from explicit interface use as they are part of larger systems that expose higher-level functionality through their interfaces. However, such interfaces may also be exposed on a lower level in case finer-grained control is needed. The need for such crosscutting interface requirements will be extracted from the NBDIF: Volume 3, Use Cases and General Requirements document.
[bookmark: messagingcommunications-frameworks]Messaging/Communications Frameworks
Messaging and communications frameworks have their roots in the High Performance Computing environments long popular in the scientific and research communities. Messaging/Communications Frameworks were developed to provide application programming interfaces (APIs) for the reliable queuing, transmission, and receipt of data.
[bookmark: resource-management-framework]Resource Management Framework
As Big Data systems have evolved and become more complex, and as businesses work to leverage limited computation and storage resources to address a broader range of applications and business challenges, the requirement to effectively manage those resources has grown significantly. While tools for resource management and elastic computing have expanded and matured in response to the needs of cloud providers and virtualization technologies, Big Data introduces unique requirements for these tools. However, Big Data frameworks tend to fall more into a distributed computing paradigm, which presents additional challenges.
[bookmark: sec:app-provider-requirements][bookmark: _Toc1569558][bookmark: _Toc1641008]Big Data Application Provider to Big Data Framework Provider Interface
The Big Data Framework Provider typically consists of one or more hierarchically organized instances of the components in the NBDRA IT value chain (Figure 1). There is no requirement that all instances at a given level in the hierarchy be of the same technology. In fact, most Big Data implementations are hybrids that combine multiple technology approaches to provide flexibility or meet the complete range of requirements, which are driven from the Big Data Application Provider.
[bookmark: sec:spec-paradigm][bookmark: _Toc1569559]
[bookmark: _Toc1641009]Specification Paradigm
This section summarizes the elementary services that are important to the NBDRA.
[bookmark: hybrid-and-multiple-frameworks][bookmark: _Toc1569560][bookmark: _Toc1641010]Hybrid and Multiple Frameworks
To avoid vendor lock-in, Big Data systems must be able to deal with hybrid and multiple frameworks. This is not only true for Clouds, containers, DevOps, but also for components of the NBDRA.
[bookmark: design-by-resource-oriented-architecture][bookmark: _Toc1569561][bookmark: _Toc1641011]Design by Resource-Oriented Architecture
A resource-oriented architecture represents a software architecture and programming paradigm for designing and developing software in the form of resources. It is often associated with REpresentational State Transfer (REST) interfaces. The resources are software components which can be reused in concrete reference implementations. The service specification is conducted with OpenAPI, allowing use to provide it in a very general form that is independent of the framework or computer language in which the services can be specified. Note that OpenAPI defines services in REST The previous version only specified the resource objects.
[bookmark: design-by-example][bookmark: _Toc1569562][bookmark: _Toc1641012]Design by Example
To accelerate discussion among the NBD-PWG members, contributors to this document are encouraged to also provide the NBD-PWG with examples that can be included in an appendix.
[bookmark: version-management][bookmark: _Toc1569563][bookmark: _Toc1641013]Version Management
During the design phase and development period of each version of this document, enhancements are managed through GitHub and community contributions are managed via GitHub issues. This allows preservation of the history of this document. When a new version is ready, the version will be tagged in GitHub. Older versions will, through this process, also be available as historical documents. Discussions about objects in written form are communicated as GitHub issues.
[bookmark: interface-compliancy][bookmark: _Toc1569564][bookmark: _Toc1641014]Interface Compliancy
Due to the easy extensibility of the objects in this document and their implicit interfaces, it is important to introduce a terminology that allows the definition of interface compliancy. We define three levels of interface compliance as follows:
Full Compliance: These are reference implementations that provide full compliance to the objects defined in this document. A version number will be added to assure that the snapshot in time of the objects is associated with the version. This reference implementation will implement all objects.
Partial Compliance: These are reference implementations that provide partial compliance to the objects defined in this document. A version number will be added to assure that the snapshot in time of the objects is associated with the version. This reference implementation will implement a partial list of the objects. A document will be generated during the reference implementation that lists all objects defined, but also lists the objects that are not defined by the reference architecture. The document will outline which objects and interfaces have been implemented.
Full and Extended Compliance: These are interfaces that in addition to the full compliance also introduce additional interfaces and extend them. A document will be generated during the reference implementation that lists the differences to the document defined here.
The documents generated during the reference implementation can then be forwarded to the Reference Architecture Subgroup for further discussion and for possible future modifications based on additional practical user feedback.
[bookmark: sec:specification][bookmark: _Toc1569565]
[bookmark: _Toc1641015]Example Specification
The specifications to this document are provided through an automated document creation process so that the actual OpenAPI specifications are the source for the document. Thus we will have all OpenAPI specifications located in the following directory in GitHub:
https://github.com/cloudmesh-community/nist/tree/master/spec
Limitations of the current implementation are as follows. It is a demonstration that showcases the generation of a fully functioning REST service based on the specifications provided in this document. However, it is expected that scalability, distribution of services, and other advanced options need to be addressed based on application requirements.
[bookmark: sec:spec-table][bookmark: _Toc1569566][bookmark: _Toc1641016]List of specifications
The following table lists the current set of resource objects that we are defining in this draft. Additional objects are also available at:
https://github.com/cloudmesh-community/nist/tree/master/spec

[bookmark: _Toc1641064]Table 1: List of Specifications
	Service
	Version
	Date

	Alias
	3.1.1
	29-01-2019

	Batch Job
	3.0.2
	10-30-2018

	Containers
	3.1.1
	02-15-2019

	Database
	3.1.1
	02-15-2019

	Default
	3.1.1
	02-15-2019

	Deployment
	3.0.2
	10-30-2018

	File
	3.1.1
	02-15-2019

	Filter
	3.0.2
	10-30-2018

	Flavor
	3.1.1
	02-15-2019

	Hadoop
	3.1.1
	02-15-2019

	Image
	3.1.1
	02-15-2019

	Keyvaluestore
	3.1.1
	02-15-2019

	Microservice
	3.0.1
	

	Nic
	3.0.1
	

	Organization
	3.1.1
	02-15-2019

	Key
	3.1.1
	02-15-2019

	Replica
	3.1.1
	02-15-2019

	Reservation
	3.0.2
	10-30-2018

	Scheduler
	3.1.1
	02-15-2019

	Scheduler
	3.1.1
	02-15-2019

	Secgroup
	3.1.1
	02-12-2019

	Batch Job
	3.0.0
	02-08-2019

	Stream
	3.0.2
	10-30-2018

	Timestamp
	3.1.1
	02-15-2019

	User
	3.1.1
	02-15-2019

	Variables
	3.1.1
	02-15-2019

	Variables
	3.1.1
	02-15-2019

	VCluster
	3.1.1
	02-11-2019

	Virtual Cluster
	3.1.1
	02-11-2019

	Virtualdirectory
	3.1.1
	02-15-2019

	Virtual Machine
	3.1.1
	02-15-2019

Figure 2 shows the provider view of the specification resources.
[image:]
[bookmark: _Toc1606008][bookmark: _Toc1606150][bookmark: _Toc1606289][bookmark: _Toc1606343][bookmark: _Toc1641062]Figure 2: Provider view

Figure 3 shows the resource view of the specification resources.
[image:]
[bookmark: _Toc1606009][bookmark: _Toc1606151][bookmark: _Toc1606290][bookmark: _Toc1606344][bookmark: _Toc1641063]Figure 3: Resource view
[bookmark: identity][bookmark: _Toc1569567][bookmark: _Toc1641017]Identity
As part of services an identity often needs to be specified. In addition, such persons are often part of groups and have roles within these groups. Thus, four important terms related to the identity are distinguished as follows:
User: The information identifying the profile of a person
Group: A group that a person may belong to that is important to define access to services
Role: A role given to a person as part of the group that can refine access rights.
Organization: The information representing an Organization that manages a Big Data Service
[bookmark: authentication][bookmark: _Toc1569568][bookmark: _Toc1641018]Authentication
At this time, mechanisms are not yet included to manage authentication to external services such as clouds that can stage virtual machines. However, the group has shown multiple solutions to this in cloudmesh.
Local configuration file: A configuration file is managed locally to allow access to the clouds. It is the designer’s responsibility not to expose such credentials.
Session based authentication: No passwords are stored in the configuration file and access is granted on a per session basis where the password needs to be entered.
Service based authentication: The authentication is delegated to an external process. One example here is Auth.
The service that acts in behalf of the user needs to have access to the appropriate cloud provider credentials
An example for a configuration file is provided at the following location:
https://github.com/cloudmesh-community/cm/blob/master/cm4/etc/cloudmesh4.yaml
[bookmark: organization][bookmark: _Toc1569569][bookmark: _Toc1641019]Organization
An important concept in many services is the management of a group of users in an organization that includes Big Data services. User management within an organization can be achieved through several concepts. First, it can be achieved by defining the organization. Second, this organization can contain a number of users. Third, users within the organization can have a variety of roles and be separated in various groups. These roles and groups are used, for example, to distinguish different access rights to services.
[bookmark: properties-organization]Properties Organization
	Property
	Type
	Description

	name
	string
	Name of the organization

	users
	array[#/definitions/User]
	list of users

	timestamp
	
	timestamps associated with the organization

[bookmark: paths]Paths
[bookmark: cloudmeshorganization]/cloudmesh/organization
[bookmark: get-cloudmeshorganization]GET /cloudmesh/organization
Returns all organizations
Responses
	Code
	Description
	Schema

	200
	organization info
	

[bookmark: put-cloudmeshorganization]PUT /cloudmesh/organization
Creates a new organization
Responses
	Code
	Description
	Schema

	201
	Created
	

Parameters
	Name
	Located in
	Description
	Required
	Schema

	organization
	body
	The new organization to create
	False
	Organization

[bookmark: cloudmeshorganizationname]/cloudmesh/organization/{name}
[bookmark: get-cloudmeshorganizationname]GET /cloudmesh/organization/{name}
Returns the organization
Responses
	Code
	Description
	Schema

	200
	organization info
	Organization

Parameters
	Name
	Located in
	Description
	Required
	Schema

	name
	path
	The name of the organization
	True
	

[bookmark: cloudmeshorganizationusers]/cloudmesh/organization/users
[bookmark: get-cloudmeshorganizationusers]GET /cloudmesh/organization/users
Returns all users of the organization
Responses
	Code
	Description
	Schema

	200
	organization info
	Organization

[bookmark: cloudmeshorganizationusersusername]/cloudmesh/organization/users/{username}
[bookmark: get-cloudmeshorganizationusersusername]GET /cloudmesh/organization/users/{username}
Returns the specific user of that organization
Responses
	Code
	Description
	Schema

	200
	organization info
	Organization

Parameters
	Name
	Located in
	Description
	Required
	Schema

	username
	path
	The username
	True
	

[bookmark: organization.yaml]organization.yaml
swagger: "2.0"
info:
 version: "3.1.1"
 x-status: defined
 x-date: 02-15-2019
 title: Organization
 description: |-

 An important concept in many services is the management of a group
 of users in an organization that includes Big Data services. User
 management within an organization can be achieved through several
 concepts. First, it can be achieved by defining the
 organization. Second, this organization can contain a number of
 users. Third, users within the organization can have a variety of
 roles and be separated in various groups. These roles and groups
 are used, for example, to distinguish different access rights to
 services.

 termsOfService: 'https://github.com/cloudmesh-community/nist/blob/master/LICENSE.txt'
 contact:
 name: NIST BDRA Interface Subgroup
 url: https://cloudmesh-community.github.io/nist/spec/
 license:
 name: Apache
host: localhost:8080
schemes:
 - http
consumes:
 - application/json
produces:
 - application/json
paths:
 /cloudmesh/organization:
 get:
 tags:
 - Organization
 summary: Returns all organizations
 description: Returns all organizations
 operationId: cloudmesh.organization.get
 produces:
 - application/json
 responses:
 '200':
 description: organization info
 schema:
 type: array
 items:
 $ref: '#/definitions/Organization'
 put:
 tags:
 - Organization
 summary: Create a new organization
 description: Create a new organization
 operationId: cloudmesh.organization.put
 parameters:
 - in: body
 name: organization
 description: The new organization to create
 schema:
 $ref: '#/definitions/Organization'
 responses:
 '201':
 description: Created
 '/cloudmesh/organization/{name}':
 get:
 tags:
 - Organization
 summary: Returns the organization
 description: Returns the organization
 operationId: cloudmesh.organization.get_by_name
 parameters:
 - name: name
 description: The name of the organization
 in: path
 required: true
 type: string
 produces:
 - application/json
 responses:
 '200':
 description: organization info
 schema:
 $ref: '#/definitions/Organization'
 /cloudmesh/organization/users:
 get:
 tags:
 - Organization
 summary: Returns all users of the organization
 description: Returns all users of the organization
 operationId: cloudmesh.organization.get_user
 produces:
 - application/json
 responses:
 '200':
 description: organization info
 schema:
 $ref: '#/definitions/Organization'
 /cloudmesh/organization/users/{username}:
 get:
 tags:
 - Organization
 summary: Returns the spcific user of that organization
 description: Returns the spcific user of that organization
 operationId: cloudmesh.organization.get_user_by_name
 parameters:
 - name: username
 description: The username
 in: path
 required: true
 type: string
 produces:
 - application/json
 responses:
 '200':
 description: organization info
 schema:
 $ref: '#/definitions/Organization'
/cloudmesh/organization/users/{username}:
 put:
 tags:
 - Organization
 summary: Create a new user in the organization
 description: Create a new user in the organization
 operationId: cloudmesh.organization.put_user
 parameters:
 - name: username
 description: The username
 in: path
 required: true
 type: string
 produces:
 - application/json
 responses:
 '200':
 description: organization info
 schema:
 $ref: '#/definitions/Organization'
definitions:
 Organization:
 type: object
 properties:
 name:
 description: Name of the organization
 type: string
 users:
 description: list of users
 type: array
 items:
 $ref: '#/definitions/User'
 timestamp:
 description: timestamps associated with the organization
 $ref: '#/definitions/Timestamp'

[bookmark: user][bookmark: _Toc1569570][bookmark: _Toc1641020]User
Services need to specify which users have access to them. User information can be reused in other services. Users are useful to create a virtual organization that depends on user data. Users can be added, removed, and listed. A group associated with the user can be used to augment users to be part of one or more groups. A number of roles can identify a specific role of a user.
Terminology
Group: A user can be part of a Group
Role: A user can have a role within that Group
[bookmark: properties-user]Properties User
	Property
	Type
	Description

	uuid
	string
	A unique id for the user

	username
	string
	The unique username associated with the user

	group
	array[string]
	A list of groups that are associated to the user

	role
	array[string]
	A list of groups that are associated to the user

	resource
	array[string]
	A list of resources the user has access to

	description
	string
	A description for this user

	firstname
	string
	The firstanme of the user

	lastname
	string
	The lastname of the user

	publickey
	string
	The lastname of the user

	email
	string
	The email of the user

	timestamp
	
	timestamps associated with the resource

[bookmark: paths-1]Paths
[bookmark: cloudmeshuser]/cloudmesh/user
[bookmark: get-cloudmeshuser]GET /cloudmesh/user
Returns all users
Responses
	Code
	Description
	Schema

	200
	user information
	

[bookmark: put-cloudmeshuser]PUT /cloudmesh/user
Creates a new user
Responses
	Code
	Description
	Schema

	201
	Created
	

Parameters
	Name
	Located in
	Description
	Required
	Schema

	user
	body
	The new user to create
	False
	User

[bookmark: cloudmeshusername]/cloudmesh/user/{name}
[bookmark: get-cloudmeshusername]GET /cloudmesh/user/{name}
Returns the user of a user while looking it up with the username
Responses
	Code
	Description
	Schema

	200
	user information
	User

Parameters
	Name
	Located in
	Description
	Required
	Schema

	name
	path
	name of the user
	True
	

[bookmark: user.yaml]user.yaml

swagger: "2.0"
info:
 version: 3.1.1
 x-status: defined
 x-date: 02-15-2019
 title: User
 description: |-

 Services need to specify which users have access to them. User
 information can be reused in other services. Users are useful to
 create a virtual organization that depends on user data. Users can
 be added, removed, and listed. A group associated with the user can be used
 to augment users to be part of one or more groups. A number of
 roles can identify a specific role of a user.

 Terminology

 * *Group*: A user can be part of a Group
 * *Role*: A user can have a role within that Group

 termsOfService: https://github.com/cloudmesh-community/nist/blob/master/LICENSE.txt
 contact:
 name: Cloudmesh User
 url: https://cloudmesh-community.github.io/nist/spec/
 license:
 name: Apache
host: localhost:8080
schemes:
 - http
consumes:
 - application/json
produces:
 - application/json
paths:
 /cloudmesh/user:
 get:
 tags:
 - User
 summary: Returns all users
 description: Returns all users
 operationId: cloudmesh.user.get
 produces:
 - application/json
 responses:
 200:
 description: user information
 schema:
 type: array
 items:
 $ref: '#/definitions/User'
 put:
 tags:
 - User
 summary: Create a new user
 description: Create a new user
 operationId: cloudmesh.user.put
 parameters:
 - in: body
 name: user
 description: The new user to create
 schema:
 $ref: '#/definitions/User'
 responses:
 201:
 description: Created
 /cloudmesh/user/{name}:
 get:
 tags:
 - User
 summary: Returns the user of a user while looking it up with the username
 description: Returns the user of a user while looking it up with the username
 operationId: cloudmesh.user.get_by_name
 parameters:
 - name: name
 description: name of the user
 in: path
 required: true
 type: string
 produces:
 - application/json
 responses:
 200:
 description: user information
 schema:
 $ref: '#/definitions/User'
definitions:
 User:
 type: object
 properties:
 uuid:
 type: string
 description: A unique id for the user
 username:
 type: string
 description: The unique username associated with the user
 group:
 type: array
 description: A list of groups that are associated to the user
 items:
 type: string
 role:
 type: array
 description: A list of groups that are associated to the user
 items:
 type: string
 resource:
 type: array
 description: A list of resources the user has access to
 items:
 type: string
 description:
 type: string
 description: A description for this user
 firstname:
 type: string
 description: The firstanme of the user
 lastname:
 type: string
 description: The lastname of the user
 publickey:
 type: string
 description: The lastname of the user
 email:
 type: string
 description: The email of the user
 timestamp:
 description: timestamps associated with the resource
 $ref: '#/definitions/Timestamp'
[bookmark: publickeystore][bookmark: _Toc1569571][bookmark: _Toc1641021]PublicKeyStore
Many services and frameworks use Secure Shell (SSH) keys to authenticate. This service allows the convenient storage of the public keys.
[bookmark: properties-publickey]Properties PublicKey
	Property
	Type
	Description

	name
	string
	The name of the public key

	value
	string
	The value of the public key

	kind
	string
	The key kind such as rsa, dsa

	group
	string
	An optional group name allowing to group keys to create custom groups

	comment
	string
	A comment for the public key

	uri
	string
	The uri of the public key if any

	fingerprint
	string
	The fingerprint of the public key

	timestamp
	
	timestamps associated with the resource

[bookmark: paths-2]Paths
[bookmark: cloudmeshpublickeystore]/cloudmesh/publickeystore
[bookmark: get-cloudmeshpublickeystore]GET /cloudmesh/publickeystore
Returns all public keys
Responses
	Code
	Description
	Schema

	200
	public key information
	

[bookmark: put-cloudmeshpublickeystore]PUT /cloudmesh/publickeystore
Put a new public key into the public key store
Responses
	Code
	Description
	Schema

	201
	Created
	

Parameters
	Name
	Located in
	Description
	Required
	Schema

	publickey
	body
	The public key to be uploaded
	False
	PublicKey

[bookmark: cloudmeshpublickeystorename]/cloudmesh/publickeystore/{name}
[bookmark: get-cloudmeshpublickeystorename]GET /cloudmesh/publickeystore/{name}
Returns a public key by name
Responses
	Code
	Description
	Schema

	200
	public key information
	PublicKey

Parameters
	Name
	Located in
	Description
	Required
	Schema

	name
	path
	The name of the public key
	True
	

[bookmark: publickeystore.yaml]publickeystore.yaml
swagger: "2.0"
info:
 version: 3.1.1
 x-status: defined
 x-date: 02-15-2019
 title: Key
 description: |-

 Many services and frameworks use Secure Shell (SSH) keys to
 authenticate. This service allows the convenient storage of the
 public keys.

 termsOfService: 'https://github.com/cloudmesh-community/nist/blob/master/LICENSE.txt'
 contact:
 name: NIST BDRA Interface Subgroup
 url: https://cloudmesh-community.github.io/nist
 license:
 name: Apache
host: localhost:8080
schemes:
 - http
consumes:
 - application/json
produces:
 - application/json
paths:
 /cloudmesh/publickeystore:
 get:
 tags:
 - Publickeystore
 summary: Returns all public keys
 description: Returns all public keys
 operationId: cloudmesh.publickeystore.get
 produces:
 - application/json
 responses:
 '200':
 description: public key information
 schema:
 type: array
 items:
 $ref: '#/definitions/PublicKey'
 put:
 tags:
 - Publickeystore
 summary: Put a new public key into the public key store
 description: Put a new public key into the public key store
 operationId: cloudmesh.publickeystore.put
 parameters:
 - in: body
 name: publickey
 description: The public key to be uploaded
 schema:
 $ref: '#/definitions/PublicKey'
 responses:
 '201':
 description: Created
 '/cloudmesh/publickeystore/{name}':
 get:
 tags:
 - Publickeystore
 summary: Returns a public key by name
 description: Returns a public key by name
 operationId: cloudmesh.publickeystore.get_by_name
 parameters:
 - name: name
 in: path
 required: true
 type: string
 description: The name of the public key
 produces:
 - application/json
 responses:
 '200':
 description: public key information
 schema:
 $ref: '#/definitions/PublicKey'
definitions:
 PublicKey:
 type: object
 description: the public key
 properties:
 name:
 type: string
 description: The name of the public key
 value:
 type: string
 description: The value of the public key
 kind:
 type: string
 description: The key kind such as rsa, dsa
 group:
 type: string
 description: An optional group name allowing to group keys to create
 custom groups
 comment:
 type: string
 description: A comment for the public key
 uri:
 type: string
 description: The uri of the public key if any
 fingerprint:
 type: string
 description: The fingerprint of the public key
 timestamp:
 description: timestamps associated with the resource
 $ref: '#/definitions/Timestamp'
[bookmark: general-resources][bookmark: _Toc1569572][bookmark: _Toc1641022]General Resources
[bookmark: timestamp][bookmark: _Toc1569573][bookmark: _Toc1641023]Timestamp
Data often needs to be timestamped to indicate when it has been accessed, created, or modified. All objects defined in this document will have, in their final version, a timestamp. The date-time string is defined in RFC3339.
[bookmark: properties-timestamp]Properties Timestamp
	Property
	Type
	Description

	accessed
	string
	The time stamp when the object was last accessed

	created
	string
	The time stamp when the object was created

	modified
	string
	The time stamp when the object was modified

[bookmark: paths-3]Paths
[bookmark: cloudmeshtimestamp]/cloudmesh/timestamp
[bookmark: get-cloudmeshtimestamp]GET /cloudmesh/timestamp
Returns all timestamps
Responses
	Code
	Description
	Schema

	200
	timestamp info
	

[bookmark: put-cloudmeshtimestamp]PUT /cloudmesh/timestamp
Create a new timestamp
Responses
	Code
	Description
	Schema

	201
	Created
	

Parameters
	Name
	Located in
	Description
	Required
	Schema

	timestamp
	body
	The new timestamp to create
	False
	Timestamp

[bookmark: cloudmeshtimestampname]/cloudmesh/timestamp/{name}
[bookmark: get-cloudmeshtimestampname]GET /cloudmesh/timestamp/{name}
Returns a timestamp
Responses
	Code
	Description
	Schema

	200
	timestamp info
	Timestamp

Parameters
	Name
	Located in
	Description
	Required
	Schema

	name
	path
	the name of the time stamp
	True
	

[bookmark: timestamp.yaml]timestamp.yaml
swagger: "2.0"
info:
 version: 3.1.1
 x-status: defined
 x-date: 02-15-2019
 title: Timestamp
 description: |-

 Data often needs to be timestamped to indicate when it has been
 accessed, created, or modified. All objects defined in this
 document will have, in their final version, a timestamp.
 The date-time string is defined in
 [RFC3339](https://xml2rfc.ietf.org/public/rfc/html/rfc3339.html#anchor14).

 termsOfService: 'https://github.com/cloudmesh-community/nist/blob/master/LICENSE.txt'
 contact:
 name: NIST BDRA Interface Subgroup
 url: https://cloudmesh-community.github.io/nist/spec/
 license:
 name: Apache
host: localhost:8080
schemes:
 - http
consumes:
 - application/json
produces:
 - application/json
paths:
 /cloudmesh/timestamp:
 get:
 tags:
 - Timestamp
 summary: Returns all timestamps
 description: Returns all timestamps
 operationId: cloudmesh.timestamp.get
 produces:
 - application/json
 responses:
 '200':
 description: timestamp info
 schema:
 type: array
 items:
 $ref: '#/definitions/Timestamp'
 put:
 tags:
 - Timestamp
 summary: Create a new timestamp
 description: Create a new timestamp
 operationId: cloudmesh.timestamp.put
 parameters:
 - in: body
 name: timestamp
 description: The new timestamp to create
 schema:
 $ref: '#/definitions/Timestamp'
 responses:
 '201':
 description: Created
 '/cloudmesh/timestamp/{name}':
 get:
 tags:
 - Timestamp
 summary: Returns a timestamp
 description: Returns a timestamp
 operationId: cloudmesh.timestamp.get_by_name
 parameters:
 - name: name
 in: path
 required: true
 type: string
 description: the name of the time stamp
 produces:
 - application/json
 responses:
 '200':
 description: timestamp info
 schema:
 $ref: '#/definitions/Timestamp'
definitions:
 Timestamp:
 type: object
 description: the timestamp
 properties:
 accessed:
 type: string
 format: date-time
 description: The time stamp when the object was last accessed
 created:
 type: string
 format: date-time
 description: The time stamp when the object was created
 modified:
 type: string
 format: date-time
 description: The time stamp when the object was modified
[bookmark: alias][bookmark: _Toc1569574][bookmark: _Toc1641024]Alias
A user may desire to create an alias for a resource. An alias may be used to more easily remember a resource. A User can deploy a service in which such aliases are stored. The aliases could naturally be shared with other users. A resource could have one or more aliases. The reason for an alias is that a resource may have a complex name but a user may want to refer to the resource using a name that is suitable for the user’s application.
[bookmark: properties-alias]Properties Alias
	Property
	Type
	Description

	name
	string
	The name of the alias

	origin
	string
	The original object name

	timestamp
	
	timestamps associated with the resource

[bookmark: paths-4]Paths
[bookmark: cloudmeshalias]/cloudmesh/alias
[bookmark: get-cloudmeshalias]GET /cloudmesh/alias
Returns all aliases
Responses
	Code
	Description
	Schema

	200
	alias information
	

[bookmark: put-cloudmeshalias]PUT /cloudmesh/alias
Creates a new alias
Responses
	Code
	Description
	Schema

	201
	Created
	

Parameters
	Name
	Located in
	Description
	Required
	Schema

	alias
	body
	The new alias to create
	True
	Alias

[bookmark: cloudmeshaliasname]/cloudmesh/alias/{name}
[bookmark: get-cloudmeshaliasname]GET /cloudmesh/alias/{name}
Returns an alias by name
Responses
	Code
	Description
	Schema

	200
	alias info
	Alias

Parameters
	Name
	Located in
	Description
	Required
	Schema

	name
	path
	The name of the alias
	True
	

[bookmark: alias.yaml]alias.yaml
swagger: "2.0"
info:
 version: 3.1.1
 x-status: defined
 x-date: 29-01-2019
 title: Alias
 description: |-

 A user may desire to create an alias for a resource. An alias may be used to
 more eaily remember a resource. A User can deploy a service in which such
 aliasses are stored. The aliasses could naturally be shared with other
 users. A resource could have one or more aliasses. The reason for an alias
 is that a resource may have a complex name but a user may want to refer to
 the resource using a name that is suitable for the user's application.

 termsOfService: 'https://github.com/cloudmesh-community/nist/blob/master/LICENSE.txt'
 contact:
 name: NIST BDRA Interface Subgroup
 url: https://cloudmesh-community.github.io/nist/spec/
 license:
 name: Apache
host: localhost:8080
schemes:
 - http
consumes:
 - application/json
produces:
 - application/json
paths:
 /cloudmesh/alias:
 get:
 tags:
 - Alias
 summary: Returns all aliases
 description: Returns all aliases
 operationId: cloudmesh.alias.get
 produces:
 - application/json
 responses:
 '200':
 description: alias information
 schema:
 type: array
 items:
 $ref: '#/definitions/Alias'
 put:
 tags:
 - Alias
 summary: Create a new alias
 description: Create a new alias
 operationId: cloudmesh.alias.put
 parameters:
 - in: body
 name: alias
 required: true
 description: The new alias to create
 schema:
 $ref: '#/definitions/Alias'
 responses:
 '201':
 description: Created
 '/cloudmesh/alias/{name}':
 get:
 tags:
 - Alias
 summary: Returns an alias by name
 description: Returns an alias by name
 operationId: cloudmesh.alias.get_by_name
 parameters:
 - name: name
 in: path
 required: true
 type: string
 description: The name of the alias
 produces:
 - application/json
 responses:
 '200':
 description: alias info
 schema:
 $ref: '#/definitions/Alias'
definitions:
 Alias:
 type: object
 description: the alias
 properties:
 name:
 type: string
 description: The name of the alias
 origin:
 type: string
 description: The original object name
 timestamp:
 description: timestamps associated with the resource
 $ref: '#/definitions/Timestamp'
[bookmark: variables][bookmark: _Toc1569575][bookmark: _Toc1641025]Variables
Variables are used to store simple values. Each variable can have a type, which is also provided as demonstrated in the object below. The variable value format is defined as string to allow maximal probability.
[bookmark: properties-variables]Properties Variables
	Property
	Type
	Description

	name
	string
	name of the variable

	value
	string
	type of the variable

	kind
	string
	value of the variable

	timestamp
	
	timestamps associated with the resource

[bookmark: paths-5]Paths
[bookmark: cloudmeshvariables]/cloudmesh/variables
[bookmark: get-cloudmeshvariables]GET /cloudmesh/variables
Returns all variabless
Responses
	Code
	Description
	Schema

	200
	variables info
	

[bookmark: put-cloudmeshvariables]PUT /cloudmesh/variables
Create a new variables
Responses
	Code
	Description
	Schema

	201
	Created
	

Parameters
	Name
	Located in
	Description
	Required
	Schema

	variables
	body
	The new variables to create
	False
	Variables

[bookmark: cloudmeshvariablesname]/cloudmesh/variables/{name}
[bookmark: get-cloudmeshvariablesname]GET /cloudmesh/variables/{name}
Returns a variables
Responses
	Code
	Description
	Schema

	200
	variables info
	Variables

Parameters
	Name
	Located in
	Description
	Required
	Schema

	name
	path
	Name of the variable
	True
	

[bookmark: variables.yaml]variables.yaml
swagger: "2.0"
info:
 version: 3.1.1
 x-status: defined
 x-date: 02-15-2019
 title: Variables
 description: |-

 Variables are used to store simple values. Each variable can have
 a type, which is also provided as demonstrated in the object
 below. The variable value format is defined as string to allow
 maximal probability.

 termsOfService: https://github.com/cloudmesh-community/nist/blob/master/LICENSE.txt
 contact:
 name: NIST BDRA Interface Subgroup
 url: https://cloudmesh-community.github.io/nist/spec/
 license:
 name: Apache
host: localhost:8080
schemes:
 - http
consumes:
 - application/json
produces:
 - application/json
paths:
 /cloudmesh/variables:
 get:
 tags:
 - Variables
 summary: Returns all variabless
 description: Returns all variabless
 operationId: cloudmesh.variables.get
 produces:
 - application/json
 responses:
 200:
 description: variables info
 schema:
 type: array
 items:
 $ref: '#/definitions/Variables'
 put:
 tags:
 - Variables
 summary: Create a new variables
 description: Create a new variables
 operationId: cloudmesh.variables.add
 parameters:
 - in: body
 name: variables
 description: The new variables to create
 schema:
 $ref: '#/definitions/Variables'
 responses:
 201:
 description: Created
 '/cloudmesh/variables/{name}':
 get:
 tags:
 - Variables
 summary: Returns a variables
 description: Returns a variables
 operationId: cloudmesh.variables.get_by_name
 parameters:
 - name: name
 description: Name of the variable
 in: path
 required: true
 type: string
 produces:
 - application/json
 responses:
 200:
 description: variables info
 schema:
 $ref: '#/definitions/Variables'
definitions:
 Variables:
 type: object
 description: the variables
 properties:
 name:
 type: string
 description: name of the variable
 value:
 type: string
 description: type of the variable
 kind:
 type: string
 description: value of the variable
 timestamp:
 description: timestamps associated with the resource
 $ref: '#/definitions/Timestamp'
[bookmark: keyvaluestore][bookmark: _Toc1569576][bookmark: _Toc1641026]Keyvaluestore
Keyvaluestore is a service to store key, value, and type information, all of which are stored as Strings. However, the type could be used to transform it into a non-string type.
[bookmark: properties-key]Properties Key
	Property
	Type
	Description

	uuid
	string
	The uuid of the key, tha uuid must be unique

	name
	string
	The name of the key. The name must be unique

	description
	string
	A description of the key

	value
	string
	The value, or content of the key

	kind
	string
	The type of the key

	timestamp
	
	timestamps associated with the resource

[bookmark: paths-6]Paths
[bookmark: cloudmeshkeyvaluestorekey]/cloudmesh/keyvaluestore/key
[bookmark: get-cloudmeshkeyvaluestorekey]GET /cloudmesh/keyvaluestore/key
Returns all keys with their values and types included
Responses
	Code
	Description
	Schema

	200
	key info
	

[bookmark: put-cloudmeshkeyvaluestorekey]PUT /cloudmesh/keyvaluestore/key
Creates a new key
Responses
	Code
	Description
	Schema

	201
	Created
	

Parameters
	Name
	Located in
	Description
	Required
	Schema

	key
	body
	The new key to create
	True
	Key

[bookmark: cloudmeshkeyvaluestorekeyname]/cloudmesh/keyvaluestore/key/{name}
[bookmark: get-cloudmeshkeyvaluestorekeyname]GET /cloudmesh/keyvaluestore/key/{name}
Returns the key with its detailed information by name of the key
Responses
	Code
	Description
	Schema

	200
	key info
	Key

Parameters
	Name
	Located in
	Description
	Required
	Schema

	name
	path
	name of the key
	True
	

[bookmark: keyvaluestore.yaml]keyvaluestore.yaml

swagger: "2.0"
info:
 version: 3.1.1
 x-status: compare to variable and merge
 x-date: 02-15-2019
 title: Keyvaluestore
 description: |-

 Keyvaluestore is a service to store key, value, and type information, all of
 which are stored as Strings. However the type could be use to transform it
 into a non strin type.

 termsOfService: 'https://github.com/cloudmesh-community/nist/blob/master/LICENSE.txt'
 contact:
 name: NIST BDRA Interface Subgroup
 url: https://cloudmesh-community.github.io/nist/spec/
 license:
 name: Apache
host: localhost:8080
schemes:
 - http
consumes:
 - application/json
produces:
 - application/json
paths:
 /cloudmesh/keyvaluestore/key:
 get:
 tags:
 - Keyvaluestore
 summary: Returns all keys with their values and types included
 description: Returns all keys with their values and types included
 operationId: cloudmesh.keyvaluestore.get
 produces:
 - application/json
 responses:
 '200':
 description: key info
 schema:
 type: array
 items:
 $ref: '#/definitions/Key'
 put:
 tags:
 - Keyvaluestore
 summary: Create a new key
 description: Create a new key
 operationId: cloudmesh.keyvaluestore.put
 parameters:
 - in: body
 name: key
 description: The new key to create
 required: true
 schema:
 $ref: '#/definitions/Key'
 responses:
 '201':
 description: Created
 /cloudmesh/keyvaluestore/key/{name}:
 get:
 tags:
 - Keyvaluestore
 summary: Returns the key with its detailed information by name of the key
 description: Returns the key with its detailed information by name of the key
 operationId: cloudmesh.keyvaluestore.get_by_name
 parameters:
 - name: name
 description: name of the key
 in: path
 required: true
 type: string
 produces:
 - application/json
 responses:
 '200':
 description: key info
 schema:
 $ref: '#/definitions/Key'
definitions:
 Key:
 type: object
 properties:
 uuid:
 type: string
 description: The uuid of the key, tha uuid must be unique
 name:
 type: string
 description: The name of the key. The name must be unique
 description:
 type: string
 description: A description of the key
 value:
 type: string
 description: The value, or content of the key
 kind:
 type: string
 description: The type of the key
 timestamp:
 description: timestamps associated with the resource
 $ref: '#/definitions/Timestamp'
[bookmark: default][bookmark: _Toc1569577][bookmark: _Toc1641027]Default
A default is a special variable that has a context associated with it. This allows one to define values that can be easily retrieved based on the associated context. For example, a default could be the image name for a cloud where the context is defined by the cloud name. In addition to the context, the service name is also specified since a service could have multiple contexts. To be able to define the kind of service there is also a kind attribute.
[bookmark: properties-default]Properties Default
	Property
	Type
	Description

	name
	string
	The name of the default

	value
	string
	The type of the default

	kind
	string
	The value of the default

	service
	string
	The name of the service

	context
	string
	The context of the service

	timestamp
	
	timestamps associated with the resource

[bookmark: paths-7]Paths
[bookmark: cloudmeshdefault]/cloudmesh/default
[bookmark: get-cloudmeshdefault]GET /cloudmesh/default
Returns all defaults
Responses
	Code
	Description
	Schema

	200
	default info
	

[bookmark: put-cloudmeshdefault]PUT /cloudmesh/default
Creates a new default
Responses
	Code
	Description
	Schema

	201
	Created
	

Parameters
	Name
	Located in
	Description
	Required
	Schema

	default
	body
	The new default to create
	True
	Default

[bookmark: cloudmeshdefaultname]/cloudmesh/default/{name}
[bookmark: get-cloudmeshdefaultname]GET /cloudmesh/default/{name}
Returns a default
Responses
	Code
	Description
	Schema

	200
	default info
	Default

Parameters
	Name
	Located in
	Description
	Required
	Schema

	name
	path
	The name of the default
	True
	

[bookmark: default.yaml]default.yaml
swagger: "2.0"
info:
 version: 3.1.1
 x-status: defined
 x-date: 02-15-2019
 title: Default
 description: |-

 A default is a special variable that has a context associated with
 it. This allows one to define values that can be easily retrieved
 based on the associated context. For example, a default could be
 the image name for a cloud where the context is defined by the
 cloud name. In addition to the context, the service name is also specified
 since a service could have multiple contexts. To be able to
 define the kind of service there is also a kind attribute.

 termsOfService: 'https://github.com/cloudmesh-community/nist/blob/master/LICENSE.txt'
 contact:
 name: NIST BDRA Interface Subgroup
 url: https://cloudmesh-community.github.io/nist/spec/
 license:
 name: Apache
host: localhost:8080
schemes:
 - http
consumes:
 - application/json
produces:
 - application/json
paths:
 /cloudmesh/default:
 get:
 tags:
 - Default
 summary: Returns all defaults
 description: Returns all defaults
 operationId: cloudmesh.default.get
 produces:
 - application/json
 responses:
 '200':
 description: default info
 schema:
 type: array
 items:
 $ref: '#/definitions/Default'
 put:
 tags:
 - Default
 summary: Create a new default
 description: Create a new default
 operationId: cloudmesh.default.add
 parameters:
 - in: body
 name: default
 required: true
 description: The new default to create
 schema:
 $ref: '#/definitions/Default'
 responses:
 '201':
 description: Created
 '/cloudmesh/default/{name}':
 get:
 tags:
 - Default
 summary: Returns a default
 description: Returns a default
 operationId: cloudmesh.default.get_by_name
 parameters:
 - name: name
 in: path
 required: true
 type: string
 description: The name of the default
 produces:
 - application/json
 responses:
 '200':
 description: default info
 schema:
 $ref: '#/definitions/Default'
definitions:
 Default:
 type: object
 description: the defaults
 properties:
 name:
 type: string
 description: The name of the default
 value:
 type: string
 description: The type of the default
 kind:
 type: string
 description: The value of the default
 service:
 type: string
 description: The name of the service
 context:
 type: string
 description: The context of the service
 timestamp:
 description: timestamps associated with the resource
 $ref: '#/definitions/Timestamp'
[bookmark: data-management][bookmark: _Toc1569578][bookmark: _Toc1641028]Data Management
[bookmark: file][bookmark: _Toc1569579][bookmark: _Toc1641029]File
Example:
"name": "report.dat",
"endpoint": "file://gregor@machine.edu:/data/report.dat",
"checksum": {"sha256":"c01b39c7a35ccc ebfeb45c69f08e17dfe3ef375a7b"},
"accessed": "1.1.2017:05:00:00:EST",
"created": "1.1.2017:05:00:00:EST",
"modified": "1.1.2017:05:00:00:EST",
size": ["GB", "Byte"]
A file is a resource allowing storage of data as a traditional file being processed. The interface to a file provides the mechanism to appropriately locate a file in a distributed system. File identification includes the name, endpoint, checksum, and size. Additional parameters, such as a timestamp can also be stored. The interface only describes the location of the file. The file object has name, endpoint (location), size (in gigabytes [GB], megabytes [MB], and Bytes), and checksum for integrity check.
[bookmark: properties-file]Properties File
	Property
	Type
	Description

	name
	string
	The name of the file

	endpoint
	string
	The location of the file

	checksum
	string
	The checksum of the file

	size
	integer
	The size of the file in byte

	timestamp
	
	timestamps associated with the file

[bookmark: paths-8]Paths
[bookmark: cloudmeshfile]/cloudmesh/file
[bookmark: get-cloudmeshfile]GET /cloudmesh/file
Returns all files
Responses
	Code
	Description
	Schema

	200
	file info
	

[bookmark: put-cloudmeshfile]PUT /cloudmesh/file
Creates a new file
Responses
	Code
	Description
	Schema

	201
	Created
	

Parameters
	Name
	Located in
	Description
	Required
	Schema

	file
	body
	The new file record to create
	True
	File

[bookmark: cloudmeshfilename]/cloudmesh/file/{name}
[bookmark: get-cloudmeshfilename]GET /cloudmesh/file/{name}
Returns a file by name
Responses
	Code
	Description
	Schema

	200
	file info
	File

Parameters
	Name
	Located in
	Description
	Required
	Schema

	name
	path
	The name of the file
	True
	

[bookmark: file.yaml]file.yaml
swagger: "2.0"
info:
 version: 3.1.1
 x-status: defined
 x-date: 02-15-2019
 title: File
 description: |-

 A file is a resource allowing storage of data as a traditional file
 being processed. The interface to a file provides the mechanism to
 appropriately locate a file in a distributed system. File
 identification includes the name, endpoint, checksum, and
 size. Additional parameters, such as a timestamp can
 also be stored. The interface only describes the location of the
 file. The file object has name, endpoint (location), size (in gigabytes [GB],
 megabytes [MB], and Bytes), and checksum for integrity check.

 termsOfService: 'https://github.com/cloudmesh-community/nist/blob/master/LICENSE.txt'
 contact:
 name: NIST BDRA Interface Subgroup
 url: https://cloudmesh-community.github.io/nist/spec/
 license:
 name: Apache
host: localhost:8080
schemes:
 - http
consumes:
 - application/json
produces:
 - application/json
paths:
 /cloudmesh/file:
 get:
 tags:
 - File
 summary: Returns all files
 description: Returns all files
 operationId: cloudmesh.file.get
 produces:
 - application/json
 responses:
 '200':
 description: file info
 schema:
 type: array
 items:
 $ref: '#/definitions/File'
 put:
 tags:
 - File
 summary: Create a new file
 description: Create a new file
 operationId: cloudmesh.file.put
 parameters:
 - in: body
 name: file
 required: true
 description: The new file record to create
 schema:
 $ref: '#/definitions/File'
 responses:
 '201':
 description: Created
 '/cloudmesh/file/{name}':
 get:
 tags:
 - File
 summary: Returns a file by name
 description: Returns a file by name
 operationId: cloudmesh.file.get_by_name
 parameters:
 - name: name
 in: path
 required: true
 type: string
 description: The name of the file
 produces:
 - application/json
 responses:
 '200':
 description: file info
 schema:
 $ref: '#/definitions/File'
definitions:
 File:
 type: object
 description: an object representing a file
 properties:
 name:
 type: string
 description: The name of the file
 endpoint:
 type: string
 description: The location of the file
 checksum:
 type: string
 description: The checksum of the file
 size:
 type: integer
 description: The size of the file in byte
 timestamp:
 description: timestamps associated with the file
 $ref: '#/definitions/Timestamp'

[bookmark: replica][bookmark: _Toc1569580][bookmark: _Toc1641030]Replica
In many distributed systems, it is important that a file can be replicated among different systems to provide faster access. It is important to provide a mechanism to trace the pedigree of the file while pointing to its original source.
[bookmark: properties-replica]Properties Replica
	Property
	Type
	Description

	name
	string
	the name of the replica

	filename
	string
	the original filename

	endpoint
	string
	The location of the file

	checksum
	string
	The checksum of the file

	size
	integer
	The size of the file in byte

	timestamp
	
	The timestamp of the replica. The timestamp refers to when this entry has been accessed or changed, not the object this replica is pointing to.

[bookmark: paths-9]Paths
[bookmark: cloudmeshreplica]/cloudmesh/replica
[bookmark: get-cloudmeshreplica]GET /cloudmesh/replica
Returns all replicas records
Responses
	Code
	Description
	Schema

	200
	replica info
	

[bookmark: put-cloudmeshreplica]PUT /cloudmesh/replica
Creates a new replica
Responses
	Code
	Description
	Schema

	201
	Created
	

Parameters
	Name
	Located in
	Description
	Required
	Schema

	replica
	body
	The new replica entry to create
	True
	Replica

[bookmark: cloudmeshreplicaname]/cloudmesh/replica/{name}
[bookmark: get-cloudmeshreplicaname]GET /cloudmesh/replica/{name}
Returns a replica by name
Responses
	Code
	Description
	Schema

	200
	replica info
	Replica

Parameters
	Name
	Located in
	Description
	Required
	Schema

	name
	path
	name of the replica entry
	True
	

[bookmark: replica.yaml]replica.yaml
swagger: "2.0"
info:
 version: 3.1.1
 x-status: defined
 x-date: 02-15-2019
 title: Replica
 description: |-

 In many distributed systems, it is important that a file can be
 replicated among different systems to provide faster access. It is
 important to provide a mechanism to trace the pedigree of the file
 while pointing to its original source.

 termsOfService: 'https://github.com/cloudmesh-community/nist/blob/master/LICENSE.txt'
 contact:
 name: NIST BDRA Interface Subgroup
 url: https://cloudmesh-community.github.io/nist/spec/
 license:
 name: Apache
host: localhost:8080
schemes:
 - http
consumes:
 - application/json
produces:
 - application/json
paths:
 /cloudmesh/replica:
 get:
 tags:
 - Replica
 summary: Returns all replicas records
 description: Returns all replicas records
 operationId: cloudmesh.replica.get
 produces:
 - application/json
 responses:
 200:
 description: replica info
 schema:
 type: array
 items:
 $ref: '#/definitions/Replica'
 put:
 tags:
 - Replica
 summary: Create a new replica
 description: Create a new replica
 operationId: cloudmesh.replica.add
 parameters:
 - in: body
 name: replica
 required: true
 description: The new replica entry to create
 schema:
 $ref: '#/definitions/Replica'
 responses:
 201:
 description: Created
 '/cloudmesh/replica/{name}':
 get:
 tags:
 - Replica
 summary: Returns a replica by name
 description: Returns a replica by name
 operationId: cloudmesh.replica.get_by_name
 parameters:
 - name: name
 description: name of the replica entry
 in: path
 required: true
 type: string
 produces:
 - application/json
 responses:
 200:
 description: replica info
 schema:
 $ref: '#/definitions/Replica'
definitions:
 Replica:
 type: object
 description: An entry representing a file replica record
 properties:
 name:
 type: string
 description: the name of the replica
 filename:
 type: string
 description: the original filename
 endpoint:
 type: string
 description: The location of the file
 checksum:
 type: string
 description: The checksum of the file
 size:
 type: integer
 description: The size of the file in byte
 timestamp:
 $ref: '#/definitions/Timestamp'
 description: The timestamp of the replica. The timestamp refers to when this entry has been accessed or changed, not the object this replica is pointing to.

[bookmark: database][bookmark: _Toc1569581][bookmark: _Toc1641031]Database
A database could have a name, an endpoint (e.g., host, port), and a protocol used (e.g., SQL, MongoDB).
[bookmark: properties-database]Properties Database
	Property
	Type
	Description

	name
	string
	name of the database

	description
	string
	description of the database

	endpoint
	string
	endpoint of the database

	kind
	string
	the kind of the database

	timestamp
	
	timestamps associated with the resource

[bookmark: paths-10]Paths
[bookmark: cloudmeshdatabase]/cloudmesh/database
[bookmark: get-cloudmeshdatabase]GET /cloudmesh/database
Returns all databases
Responses
	Code
	Description
	Schema

	200
	database info
	

[bookmark: put-cloudmeshdatabase]PUT /cloudmesh/database
Creates a new database
Responses
	Code
	Description
	Schema

	201
	Created
	

Parameters
	Name
	Located in
	Description
	Required
	Schema

	database
	body
	The new database record to create
	True
	Database

[bookmark: cloudmeshdatabasename]/cloudmesh/database/{name}
[bookmark: get-cloudmeshdatabasename]GET /cloudmesh/database/{name}
Returns a database by name
Responses
	Code
	Description
	Schema

	200
	database info
	Database

Parameters
	Name
	Located in
	Description
	Required
	Schema

	name
	path
	name of the database
	True
	

[bookmark: database.yaml]database.yaml
swagger: "2.0"
info:
 version: 3.1.1
 x-status: defined
 x-date: 02-15-2019
 title: Database
 description: |-

 A database could have a name, an endpoint (e.g., host, port),
 and a protocol used (e.g., SQL, MongoDB).

 termsOfService: 'https://github.com/cloudmesh-community/nist/blob/master/LICENSE.txt'
 contact:
 name: NIST BDRA Interface Subgroup
 url: https://cloudmesh-community.github.io/nist/spec/
 license:
 name: Apache
host: localhost:8080
schemes:
 - http
consumes:
 - application/json
produces:
 - application/json
paths:
 /cloudmesh/database:
 get:
 tags:
 - Database
 summary: Returns all databases
 description: Returns all databases
 operationId: cloudmesh.datbase.get
 produces:
 - application/json
 responses:
 200:
 description: database info
 schema:
 type: array
 items:
 $ref: '#/definitions/Database'
 put:
 tags:
 - Database
 summary: Create a new database
 description: Create a new database
 operationId: cloudmesh.database.put
 parameters:
 - in: body
 name: database
 required: true
 description: The new database record to create
 schema:
 $ref: '#/definitions/Database'
 responses:
 201:
 description: Created
 '/cloudmesh/database/{name}':
 get:
 tags:
 - Database
 summary: Returns a database by name
 description: Returns a database by name
 operationId: cloudmesh.database.get_by_name
 parameters:
 - name: name
 description: name of the database
 in: path
 required: true
 type: string
 produces:
 - application/json
 responses:
 200:
 description: database info
 schema:
 $ref: '#/definitions/Database'
definitions:
 Database:
 type: object
 description: This defines a database object as an entry
 properties:
 name:
 type: string
 description: name of the database
 description:
 type: string
 description: description of the database
 endpoint:
 type: string
 description: endpoint of the database
 kind:
 type: string
 description: the kind of the database
 timestamp:
 description: timestamps associated with the resource
 $ref: '#/definitions/Timestamp'
[bookmark: virtual-directory][bookmark: _Toc1569582][bookmark: _Toc1641032]Virtual Directory
A virtual directory is a collection of files or replicas of the files. A virtual directory can contain a number of entities including files, streams, and other virtual directories as part of a collection. The element in the collection can either be defined by uuid or by name.
[bookmark: properties-unauthorizederror]Properties UnauthorizedError
	Property
	Type
	Description

	code
	string
	Code form of the error

	message
	string
	Human readable form of the error

[bookmark: properties-virtualdirectory]Properties Virtualdirectory
	Property
	Type
	Description

	name
	string
	The name of the virtual directory

	description
	string
	description of the virtual directory

	host
	string
	remote host of the virtual directory

	location
	string
	remote location, e.g., a directory with full path on a host

	protocol
	string
	access protocol, e.g., HTTP, FTP, SSH, etc.

	credential
	object
	credential to access, e.g., username, password

	timestamp
	
	timestamps associated with the resource

[bookmark: paths-11]Paths
[bookmark: cloudmeshvirtualdirectory]/cloudmesh/virtualdirectory
[bookmark: get-cloudmeshvirtualdirectory]GET /cloudmesh/virtualdirectory
Returns all virtualdirectorys
Responses
	Code
	Description
	Schema

	200
	virtualdirectory info
	

	Code
	Description
	Schema

	401
	unauthorized error
	UnauthorizedError

[bookmark: put-cloudmeshvirtualdirectory]PUT /cloudmesh/virtualdirectory
Creates a new virtualdirectory
Responses
	Code
	Description
	Schema

	201
	Created
	

Parameters
	Name
	Located in
	Description
	Required
	Schema

	virtualdirectory
	body
	The new virtualdirectory to create
	True
	Virtualdirectory

[bookmark: cloudmeshvirtualdirectoryname]/cloudmesh/virtualdirectory/{name}
[bookmark: get-cloudmeshvirtualdirectoryname]GET /cloudmesh/virtualdirectory/{name}
Returns a virtualdirectory by name
Responses
	Code
	Description
	Schema

	200
	virtualdirectory info
	Virtualdirectory

Parameters
	Name
	Located in
	Description
	Required
	Schema

	name
	path
	name of the virtual directory
	True
	

[bookmark: virtualdirectory.yaml]virtualdirectory.yaml

swagger: "2.0"
info:
 version: 3.1.1
 x-date: 02-15-2019
 x-status: defined
 title: Virtualdirectory
 description: |-

 A virtual directory is a collection of files or replicas of the
 files. A virtual directory can contain a number of entities
 including files, streams, and other virtual directories as part of
 a collection. The element in the collection can either be defined
 by uuid or by name.

 termsOfService: https://github.com/cloudmesh-community/nist/blob/master/LICENSE.txt
 contact:
 name: NIST BDRA Interface Subgroup Service Example
 url: https://cloudmesh-community.github.io/nist/spec/
 license:
 name: Apache
host: localhost:8080
schemes:
 - http
consumes:
 - application/json
produces:
 - application/json
securityDefinitions:
 httpbasic:
 type: basic
 apikey:
 type: apiKey
 in: query
 name: api_key
 apisecret:
 type: apiKey
 in: query
 name: api_secret
paths:
 /cloudmesh/virtualdirectory:
 get:
 tags:
 - Virtualdirectory
 summary: Returns all virtualdirectorys
 description: Returns all virtualdirectorys
 operationId: cloudmesh.virtualdirectory.get
 produces:
 - application/json
 security:
 - httpbasic: []
 responses:
 '200':
 description: virtualdirectory info
 schema:
 type: array
 items:
 $ref: '#/definitions/Virtualdirectory'
 '401':
 description: unauthorized error
 schema:
 $ref: '#/definitions/UnauthorizedError'
 put:
 tags:
 - Virtualdirectory
 summary: Create a new virtualdirectory
 description: Create a new virtualdirectory
 operationId: cloudmesh.virtualdirectory.add
 parameters:
 - in: body
 name: virtualdirectory
 required: true
 description: The new virtualdirectory to create
 schema:
 $ref: '#/definitions/Virtualdirectory'
 security:
 - apikey: []
 apisecret: []
 responses:
 '201':
 description: Created
 '/cloudmesh/virtualdirectory/{name}':
 get:
 tags:
 - Virtualdirectory
 summary: Returns a virtualdirectory by name
 description: Returns a virtualdirectory by name
 operationId: cloudmesh.virtualdirectory.get_by_name
 parameters:
 - name: name
 description: name of the virtual directory
 in: path
 required: true
 type: string
 produces:
 - application/json
 security:
 - httpbasic: []
 responses:
 '200':
 description: virtualdirectory info
 schema:
 $ref: '#/definitions/Virtualdirectory'
definitions:
 UnauthorizedError:
 type: object
 description: unauthorized error
 properties:
 code:
 type: string
 description: Code form of the error
 message:
 type: string
 description: Human readable form of the error
 Virtualdirectory:
 type: object
 description: the virtualdirectory
 properties:
 name:
 description: The name of the virtual directory
 type: string
 description:
 description: description of the virtual directory
 type: string
 host:
 description: remote host of the virtual directory
 type: string
 location:
 description: remote location, e.g., a directory with full path on a host
 type: string
 protocol:
 description: access protocol, e.g., HTTP, FTP, SSH, etc.
 type: string
 credential:
 description: credential to access, e.g., username, password
 type: object
 timestamp:
 description: timestamps associated with the resource
 $ref: '#/definitions/Timestamp'

[bookmark: compute-management---virtual-clusters][bookmark: _Toc1569583][bookmark: _Toc1641033]Compute Management - Virtual Clusters
[bookmark: virtual-cluster][bookmark: _Toc1569584][bookmark: _Toc1641034]Virtual Cluster
A Virtual Cluster is modeled as one Front-end, or manager node, and one or multiple compute nodes. The manager node usually served as a login node and can be accessed from outside via a public IP. The compute nodes are connected to the manager node via a private, usually high performance (high throughput and low latency), network and thus accessible only from the manager node. To use the virtual cluster, you login to the manager node, and from there you can login to any compute node, or submit a job to run on the compute nodes.
[bookmark: properties-virtualcluster]Properties VirtualCluster
	Property
	Type
	Description

	name
	string
	The name of the virtual cluster

	description
	string
	A description of the virtual cluster

	nnodes
	integer
	number of nodes of the virtual cluster

	owner
	string
	owner of the virtual cluster

	manager
	
	Manager node of the virtual cluster

	nodes
	array[#/definitions/Node]
	List of nodes of the virtual cluster

	timestamp
	
	timestamps associated with the resource

[bookmark: properties-node]Properties Node
	Property
	Type
	Description

	name
	string
	name of the node

	state
	string
	power state of the node

	ncpu
	integer
	number of virtual CPUs of the node

	ram
	string
	RAM size of the node

	disk
	string
	Disk size of the node

	nics
	array[#/definitions/NIC]
	List of network interfaces of the node

[bookmark: properties-nic]Properties NIC
	Property
	Type
	Description

	mac
	string
	MAC address of the node

	ip
	string
	IP address of the node

[bookmark: paths-12]Paths
[bookmark: cloudmeshvirtualclustervirtualcluster]/cloudmesh/virtualcluster/virtualcluster
[bookmark: X765799b81989205a9ade4e5088aad0b1ac0be34]GET /cloudmesh/virtualcluster/virtualcluster
Returns all virtual clusters
Responses
	Code
	Description
	Schema

	200
	profile info
	

[bookmark: X46fc95a0d8efa6d69c57c8bd8aed1107634d8fc]PUT /cloudmesh/virtualcluster/virtualcluster
Creates a new virtual cluster
Responses
	Code
	Description
	Schema

	201
	Created
	

Parameters
	Name
	Located in
	Description
	Required
	Schema

	virtualcluster
	body
	The new virtual cluster to create
	True
	VirtualCluster

[bookmark: X26663ff4991a5d704c36d34decaff3c0a2f22ec]/cloudmesh/virtualcluster/virtualcluster/{virtualclustername}
[bookmark: X75a2f71404e4956be37c9e2ed19a426219af7cf]GET /cloudmesh/virtualcluster/virtualcluster/{virtualclustername}
Returns a virtual cluster by its name
Responses
	Code
	Description
	Schema

	200
	virtualcluster info
	VirtualCluster

Parameters
	Name
	Located in
	Description
	Required
	Schema

	virtualclustername
	path
	name of the virtual cluster
	True
	

[bookmark: X74eaddde35e2f4e06fa798fe00e44a146ddcad9]/cloudmesh/virtualcluster/virtualcluster/{virtualclustername}/manager
[bookmark: Xf3beaae6001df864b01d956f64656f7963ed7ff]GET /cloudmesh/virtualcluster/virtualcluster/{virtualclustername}/manager
Returns the manager node info of the specified virtual cluster
Responses
	Code
	Description
	Schema

	200
	virtual cluster manager node info
	Node

Parameters
	Name
	Located in
	Description
	Required
	Schema

	virtualclustername
	path
	name of the virtua cluster
	True
	

[bookmark: X8220ffb38b03a0d138b0dd35e3302b2887f84bd]/cloudmesh/virtualcluster/virtualcluster/{virtualclustername}/{nodename}
[bookmark: X284ea5b22dd956cc4479e1a670edd7e6db0eb8b]GET /cloudmesh/virtualcluster/virtualcluster/{virtualclustername}/{nodename}
Returns the specified node info of the specified virtualcluster
Responses
	Code
	Description
	Schema

	200
	virtualcluster node info
	Node

Parameters
	Name
	Located in
	Description
	Required
	Schema

	virtualclustername
	path
	name of the virtua cluster
	True
	

	nodename
	path
	name of the name
	True
	

[bookmark: vc.yaml]vc.yaml

swagger: "2.0"
info:
 version: 3.1.1
 x-date: 02-11-2019
 x-status: defined
 title: "Virtual Cluster"
 description: |-

 A Virtual Cluster is modeled as one Front-end, or manager node, and one or
 multiple compute nodes. The manager node usually served as a login node and
 can be accessed from outside via a public IP. The compute nodes are
 connected to the manager node via a private, usually high performance (high
 throughput and low latency), network and thus accessible only from the
 manager node. To use the virtual cluster, you login to the manager node, and
 from there you can login to any compute node, or submit a job to run on the
 compute nodes.

 termsOfService: https://github.com/cloudmesh-community/nist/blob/master/LICENSE.txt
 contact:
 name: NIST BDRA Interface Subgroup Service Example
 url: https://cloudmesh-community.github.io/nist/spec/
 license:
 name: Apache
host: localhost:8080
schemes:
 - http
consumes:
 - application/json
produces:
 - application/json
paths:
 /cloudmesh/virtualcluster/virtualcluster:
 get:
 tags:
 - Virtualcluster
 summary: Returns all virtual clusters
 description: Returns all virtual clusters
 operationId: cloudmesh.virtualcluster.get
 produces:
 - application/json
 responses:
 "200":
 description: profile info
 schema:
 type: array
 items:
 $ref: "#/definitions/VirtualCluster"
 put:
 tags:
 - Virtualcluster
 summary: Create a new virtual cluster
 description: Create a new virtual cluster
 operationId: cloudmesh.virtualcluster.add
 parameters:
 - in: body
 name: virtualcluster
 description: The new virtual cluster to create
 required: true
 schema:
 $ref: "#/definitions/VirtualCluster"
 responses:
 "201":
 description: Created
 /cloudmesh/virtualcluster/virtualcluster/{virtualclustername}:
 get:
 tags:
 - Virtualcluster
 summary: Returns a virtual cluster by its name
 description: Returns a virtual cluster by its name
 operationId: cloudmesh.virtualcluster.getByName
 parameters:
 - name: virtualclustername
 description: name of the virtual cluster
 in: path
 required: true
 type: string
 produces:
 - application/json
 responses:
 "200":
 description: virtualcluster info
 schema:
 $ref: "#/definitions/VirtualCluster"
 /cloudmesh/virtualcluster/virtualcluster/{virtualclustername}/manager:
 get:
 tags:
 - Virtualcluster
 summary: Returns the manager node info of the specified virtual cluster
 description: Returns the manager node info of the specified virtual cluster
 operationId: cloudmesh.virtualcluster.getManagerByName
 parameters:
 - name: virtualclustername
 description: name of the virtua cluster
 in: path
 required: true
 type: string
 produces:
 - application/json
 responses:
 "200":
 description: virtual cluster manager node info
 schema:
 $ref: "#/definitions/Node"
 /cloudmesh/virtualcluster/virtualcluster/{virtualclustername}/{nodename}:
 get:
 tags:
 - Virtualcluster
 summary: Returns the specified node info of the specified virtualcluster
 description: Returns the specified node info of the specified virtualcluster
 operationId: cloudmesh.virtualcluster.getNodeByName
 parameters:
 - name: virtualclustername
 description: name of the virtua cluster
 in: path
 required: true
 type: string
 - name: nodename
 description: name of the name
 in: path
 required: true
 type: string
 produces:
 - application/json
 responses:
 "200":
 description: virtualcluster node info
 schema:
 $ref: "#/definitions/Node"
definitions:
 VirtualCluster:
 type: object
 properties:
 name:
 description: The name of the virtual cluster
 type: string
 description:
 type: string
 description: A description of the virtual cluster
 nnodes:
 type: integer
 description: number of nodes of the virtual cluster
 owner:
 type: string
 description: owner of the virtual cluster
 manager:
 description: Manager node of the virtual cluster
 $ref: "#/definitions/Node"
 nodes:
 description: List of nodes of the virtual cluster
 type: array
 items:
 $ref: "#/definitions/Node"
 timestamp:
 description: timestamps associated with the resource
 $ref: '#/definitions/Timestamp'

 Node:
 type: object
 properties:
 name:
 type: string
 description: name of the node
 state:
 type: string
 description: power state of the node
 ncpu:
 type: integer
 description: number of virtual CPUs of the node
 ram:
 type: string
 description: RAM size of the node
 disk:
 type: string
 description: Disk size of the node
 nics:
 type: array
 description: List of network interfaces of the node
 items:
 $ref: "#/definitions/NIC"
 NIC:
 type: object
 properties:
 mac:
 type: string
 description: MAC address of the node
 ip:
 type: string
 description: IP address of the node
[bookmark: scheduler][bookmark: _Toc1569585][bookmark: _Toc1641035]Scheduler
The scheduler is a service to store scheduler, value, and type information, all of which are stored as strings.
[bookmark: properties-scheduler]Properties Scheduler
	Property
	Type
	Description

	name
	string
	name of the scheduler

	value
	string
	information of the scheduler

	kind
	string
	the scheduler kind or type

	timestamp
	
	timestamps associated with the resource

[bookmark: paths-13]Paths
[bookmark: cloudmeshschedulers]/cloudmesh/schedulers
[bookmark: get-cloudmeshschedulers]GET /cloudmesh/schedulers
Returns all schedulers
Responses
	Code
	Description
	Schema

	200
	scheduler info
	

[bookmark: put-cloudmeshschedulers]PUT /cloudmesh/schedulers
Create a new scheduler
Responses
	Code
	Description
	Schema

	201
	Created
	

Parameters
	Name
	Located in
	Description
	Required
	Schema

	scheduler
	body
	The new scheduler to create
	False
	Scheduler

[bookmark: cloudmeshschedulername]/cloudmesh/scheduler/{name}
[bookmark: get-cloudmeshschedulername]GET /cloudmesh/scheduler/{name}
Returns a scheduler
Responses
	Code
	Description
	Schema

	200
	scheduler info
	Scheduler

Parameters
	Name
	Located in
	Description
	Required
	Schema

	name
	path
	name of the scheduler
	True
	

[bookmark: scheduler.yaml]scheduler.yaml
swagger: "2.0"
info:
 version: 3.1.1
 x-date: 02-15-2019
 x-status: defined
 title: Scheduler
 description: |-

 The scheduler is a service to store scheduler, value, and type information, all of which
 are stored as strings.

 termsOfService: 'https://github.com/cloudmesh-community/nist/blob/master/LICENSE.txt'
 contact:
 name: NIST BDRA Interface Subgroup
 url: https://cloudmesh-community.github.io/nist
 license:
 name: Apache
host: localhost:8080
schemes:
 - http
consumes:
 - application/json
produces:
 - application/json
paths:
 /cloudmesh/schedulers:
 get:
 tags:
 - Scheduler
 summary: Returns all schedulers
 description: Returns all schedulers
 operationId: cloudmesh.scheduler.get
 produces:
 - application/json
 responses:
 '200':
 description: scheduler info
 schema:
 type: array
 items:
 $ref: '#/definitions/Scheduler'
 put:
 tags:
 - Scheduler
 summary: Create a new scheduler
 description: Create a new scheduler
 operationId: cloudmesh.scheduler.add
 parameters:
 - in: body
 name: scheduler
 description: The new scheduler to create
 schema:
 $ref: '#/definitions/Scheduler'
 responses:
 '201':
 description: Created
 '/cloudmesh/scheduler/{name}':
 get:
 tags:
 - Scheduler
 summary: Returns a scheduler
 description: Returns a scheduler
 operationId: cloudmesh.scheduler.get_by_name
 parameters:
 - name: name
 description: name of the scheduler
 in: path
 required: true
 type: string
 produces:
 - application/json
 responses:
 '200':
 description: scheduler info
 schema:
 $ref: '#/definitions/Scheduler'
definitions:
 Scheduler:
 type: object
 description: the scheduler
 properties:
 name:
 type: string
 description: name of the scheduler
 value:
 type: string
 description: information of the scheduler
 kind:
 type: string
 description: the scheduler kind or type
 timestamp:
 description: timestamps associated with the resource
 $ref: '#/definitions/Timestamp'
[bookmark: compute-management---virtual-machines][bookmark: _Toc1569586][bookmark: _Toc1641036]Compute Management - Virtual Machines
This section summarizes a basic interface specification of virtual machines.
[bookmark: image][bookmark: _Toc1569587][bookmark: _Toc1641037]Image
Image defines an object representing a system image in a cloud that can be used to start virtual machines.
[bookmark: properties-image]Properties Image
	Property
	Type
	Description

	id
	string
	A unique id for the image

	name
	string
	Name of the image

	label
	string
	A label that can be defined by the user for the image

	description
	string
	A description for the image

	collection
	string
	The collection in which the image fits

	cloud
	string
	A cloud provider for which the image is designed. If multiple are using the image, they are passed along as space seperated strings

	os_type
	string
	The OS of the image

	osVersion
	string
	The OS version of the image

	min_requirement
	
	minimum requirement to run the image

	status
	string
	The status of the image

	progress
	integer
	The loading progress percentage of the image

	visibility
	string
	The visibility of the image

	timestamp
	
	timestamps associated with the file

[bookmark: properties-minimum_requirements]Properties Minimum_Requirements
	Property
	Type
	Description

	disk_space
	integer
	Minimum disk space in bytes required for the image

	ram
	integer
	Minimum ram size in bytes to run the image

	cpu
	string
	Minimum cpu required to run the image including number of cores and clock speed

[bookmark: paths-14]Paths
[bookmark: cloudmeshimage]/cloudmesh/image
[bookmark: get-cloudmeshimage]GET /cloudmesh/image
Returns all general description images
Responses
	Code
	Description
	Schema

	200
	default image info
	

[bookmark: put-cloudmeshimage]PUT /cloudmesh/image
Creates a new image
Responses
	Code
	Description
	Schema

	201
	Created
	

Parameters
	Name
	Located in
	Description
	Required
	Schema

	image
	body
	The new image record to create
	True
	Image

[bookmark: cloudmeshimagename]/cloudmesh/image/{name}
[bookmark: get-cloudmeshimagename]GET /cloudmesh/image/{name}
Returns general description of an image
Responses
	Code
	Description
	Schema

	200
	image info
	Image

Parameters
	Name
	Located in
	Description
	Required
	Schema

	name
	path
	name of the image
	True
	

[bookmark: image.yaml]image.yaml
swagger: "2.0"
info:
 version: 3.1.1
 x-date: 02-15-2019
 x-status: defined
 title: Image
 description: |-

 Image defines an object representing a system image
 in a cloud that can be used to start virtual machines.

 termsOfService: 'https://github.com/cloudmesh-community/nist/blob/master/LICENSE.txt'
 contact:
 name: NIST BDRA Interface Subgroup
 url: https://cloudmesh-community.github.io/nist/spec/
 license:
 name: Apache
host: localhost:8080
schemes:
 - http
consumes:
 - application/json
produces:
 - application/json
paths:
 /cloudmesh/image:
 get:
 tags:
 - Image
 summary: Returns all general description images
 description: Returns all general description images
 operationId: cloudmesh.image.get
 produces:
 - application/json
 responses:
 '200':
 description: default image info
 schema:
 type: array
 items:
 $ref: '#/definitions/Image'
 put:
 tags:
 - Image
 summary: Create a new image
 description: Create a new image
 operationId: cloudmesh.image.put
 parameters:
 - in: body
 name: image
 required: true
 description: The new image record to create
 schema:
 $ref: '#/definitions/Image'
 responses:
 '201':
 description: Created
 '/cloudmesh/image/{name}':
 get:
 tags:
 - Image
 summary: Returns general description of an image
 description: Returns general description of an image
 operationId: cloudmesh.image.get_by_name
 parameters:
 - name: name
 description: name of the image
 in: path
 required: true
 type: string
 produces:
 - application/json
 responses:
 '200':
 description: image info
 schema:
 $ref: '#/definitions/Image'
definitions:
 Image:
 type: object
 properties:
 id:
 type: string
 description: A unique id for the image
 name:
 type: string
 description: Name of the image
 label:
 type: string
 description: A label that can be defined by the user for the image
 description:
 type: string
 description: A description for the image
 collection:
 type: string
 description: The collection in which the image fits
 cloud:
 type: string
 description: A cloud provider for which the image is designed. If multiple are using the image, they are passed along as space seperated strings
 os_type:
 type: string
 description: The OS of the image
 osVersion:
 type: string
 description: The OS version of the image
 min_requirement:
 $ref: '#/definitions/Minimum_Requirements'
 description: minimum requirement to run the image
 status:
 type: string
 description: The status of the image
 progress:
 type: integer
 description: The loading progress percentage of the image
 visibility:
 description: The visibility of the image
 type: string
 timestamp:
 description: timestamps associated with the file
 $ref: '#/definitions/Timestamp'
 Minimum_Requirements:
 type: object
 properties:
 disk_space:
 type: integer
 description: Minimum disk space in bytes required for the image
 ram:
 type: integer
 description: Minimum ram size in bytes to run the image
 cpu:
 type: string
 description: Minimum cpu required to run the image including number of cores and clock speed
[bookmark: flavor][bookmark: _Toc1569588][bookmark: _Toc1641038]Flavor
The flavor specifies elementary information about a compute node. This information includes name, id, label, ram size, swap size, disk space, availability of ephemeral disk, available bandwidth, price value, cloud name, and date and time of last update. Flavors and the corresponding information are essential to size a virtual cluster appropriately.
[bookmark: properties-flavor]Properties Flavor
	Property
	Type
	Description

	name
	string
	name of the flavor

	id
	string
	the id of the flavor

	label
	string
	a label that a user can set for this flavor

	description
	string
	A description for the commpute node

	ram
	integer
	number of bytes used for the image in RAM

	swap
	integer
	number of bytes used for the image in SWAP

	disk
	integer
	number of bytes used for the disk

	ephemeral_disk
	boolean
	specifies wether the flavor features an ephemeral disk

	bandwidth
	integer
	bandwidth of the node

	price
	integer
	price for the flavor

	cloud
	string
	name of the cloud this flavor is used

	timestamp
	
	timestamps associated with the resource

[bookmark: paths-15]Paths
[bookmark: cloudmeshflavors]/cloudmesh/flavors
[bookmark: get-cloudmeshflavors]GET /cloudmesh/flavors
Returns all flavors
Responses
	Code
	Description
	Schema

	200
	flavor info
	

[bookmark: put-cloudmeshflavors]PUT /cloudmesh/flavors
Creates a new flavor
Responses
	Code
	Description
	Schema

	201
	Created
	

Parameters
	Name
	Located in
	Description
	Required
	Schema

	flavor
	body
	The new flavor to create
	True
	Flavor

[bookmark: cloudmeshflavorname]/cloudmesh/flavor/{name}
[bookmark: get-cloudmeshflavorname]GET /cloudmesh/flavor/{name}
Returns a flavor
Responses
	Code
	Description
	Schema

	200
	flavor info
	Flavor

Parameters
	Name
	Located in
	Description
	Required
	Schema

	name
	path
	name of the flavor
	True
	

[bookmark: flavor.yaml]flavor.yaml
swagger: "2.0"
info:
 version: 3.1.1
 x-date: 02-15-2019
 x-status: defined
 title: Flavor
 description: |-

 The flavor specifies elementary information about a compute
 node. This information includes name, id, label, ram size,
 swap size, disk space, availability of ephemeral disk, available
 bandwidth, price value, cloud name, and date and time of last update.
 Flavors and the correponding information are essential to size a
 virtual cluster appropriately.

 termsOfService: 'https://github.com/cloudmesh-community/nist/blob/master/LICENSE.txt'
 contact:
 name: NIST BDRA Interface Subgroup
 url: https://cloudmesh-community.github.io/nist
 license:
 name: Apache
 url: https://github.com/cloudmesh-community/nist/blob/master/LICENSE.txt
host: localhost:8080
schemes:
 - http
consumes:
 - application/json
produces:
 - application/json
paths:
 /cloudmesh/flavors:
 get:
 tags:
 - Flavor
 summary: Returns all flavors
 description: Returns all flavors
 operationId: cloudmesh.flavor.get
 produces:
 - application/json
 responses:
 '200':
 description: flavor info
 schema:
 type: array
 items:
 $ref: '#/definitions/Flavor'
 put:
 tags:
 - Flavor
 summary: Create a new flavor
 description: Create a new flavor
 operationId: cloudmesh.flavor.add
 parameters:
 - in: body
 name: flavor
 required: true
 description: The new flavor to create
 schema:
 $ref: '#/definitions/Flavor'
 responses:
 '201':
 description: Created
 '/cloudmesh/flavor/{name}':
 get:
 tags:
 - Flavor
 summary: Returns a flavor
 description: Returns a flavor
 operationId: cloudmesh.flavor.get_by_name
 parameters:
 - name: name
 description: name of the flavor
 in: path
 required: true
 type: string
 produces:
 - application/json
 responses:
 '200':
 description: flavor info
 schema:
 $ref: '#/definitions/Flavor'
definitions:
 Flavor:
 type: object
 description: the flavor
 properties:
 name:
 type: string
 description: name of the flavor
 id:
 type: string
 description: the id of the flavor
 label:
 type: string
 description: a label that a user can set for this flavor
 description:
 type: string
 description: A description for the commpute node
 ram:
 type: integer
 description: number of bytes used for the image in RAM
 swap:
 type: integer
 description: number of bytes used for the image in SWAP
 disk:
 type: integer
 description: number of bytes used for the disk
 ephemeral_disk:
 type: boolean
 description: specifies wether the flavor features an ephemeral disk
 bandwidth:
 type: integer
 description: bandwidth of the node
 price:
 type: integer
 description: price for the flavor
 cloud:
 type: string
 description: name of the cloud this flavor is used
 timestamp:
 description: timestamps associated with the resource
 $ref: '#/definitions/Timestamp'
[bookmark: vm][bookmark: _Toc1569589][bookmark: _Toc1641039]VM
VM is a service to manage virtual machines.
[bookmark: properties-vm]Properties VM
	Property
	Type
	Description

	provider
	string
	Name of the provider

	id
	string
	a unique id for the vm

	name
	string
	the name of the vm

	image
	string
	the image for the vm

	region
	string
	an optional region

	size
	string
	The size of the vm

	state
	string
	The state of the vm

	private_ips
	string
	The private IPs

	public_ips
	string
	The public IPS

	metadata
	string
	The meta data passed along to the VM

	timestamp
	
	timestamps associated with the resource

[bookmark: paths-16]Paths
[bookmark: vm-1]/vm
[bookmark: get-vm]GET /vm
Returns the list of the vms
Responses
	Code
	Description
	Schema

	200
	Listing the VMs
	

Parameters
	Name
	Located in
	Description
	Required
	Schema

	cloud
	query
	specify the cloud from which we list, if ommitted all clouds are returned.
	False
	

[bookmark: vm.yaml]vm.yaml
swagger: "2.0"
info:
 description: |-

 VM is a service to manage virtual machines.

 version: 3.1.1
 x-date: 02-15-2019
 x-status: defined
 title: Virtual Machine
 termsOfService: https://github.com/cloudmesh-community/nist/blob/master/LICENSE.txt
 contact:
 name: NIST BDRA Interface Subgroup Service Example
 url: https://cloudmesh-community.github.io/nist/spec/
 license:
 name: Apache
host: localhost:8080
basePath: /cloudmesh/v3
schemes:
 - http
consumes:
 - application/json
produces:
 - application/json
paths:
 /vm:
 get:
 tags:
 - VM
 summary: Returns the list of the vms
 description: Returns the list of the vms
 operationId: cloudmesh.vm.get
 produces:
 - application/json
 parameters:
 - name: cloud
 in: query
 type: string
 description: 'specify the cloud from which we list, if ommitted all clouds are returned.'
 required: false
 responses:
 '200':
 description: Listing the VMs
 schema:
 type: array
 items:
 $ref: '#/definitions/VM'
definitions:
 VM:
 type: object
 properties:
 provider:
 type: string
 description: Name of the provider
 id:
 type: string
 description: a unique id for the vm
 name:
 type: string
 description: the name of the vm
 image:
 type: string
 description: the image for the vm
 region:
 type: string
 description: an optional region
 size:
 type: string
 description: The size of the vm
 state:
 type: string
 description: The state of the vm
 private_ips:
 type: string
 description: The private IPs
 public_ips:
 type: string
 description: The public IPS
 metadata:
 type: string
 description: The meta data passed along to the VM
 timestamp:
 description: timestamps associated with the resource
 $ref: '#/definitions/Timestamp'
 example:
 image: image
 metadata: metadata
 size: size
 provider: provider
 name: name
 private_ips: private_ips
 id: id
 state: state
 region: region
 public_ips: public_ips
[bookmark: secgroup][bookmark: _Toc1569590][bookmark: _Toc1641040]Secgroup
A security group defines the incoming and outgoing security rules which can then be assigned to a node when a node is being created. Once the node is up, the connection to and from the node will be decided by the security group rules, in addition to any other possible rules applied on network devices or from the instance’s firewall settings. A security group may have one or multiple rules and a node may be associated with one or more security groups.
[bookmark: properties-secgroup]Properties Secgroup
	Property
	Type
	Description

	uuid
	string
	Unique identifier of the security group

	name
	string
	name of the secgroup

	description
	string
	describes what the secgroup is for

	rules
	array[#/definitions/SecGroupRule]
	List of Secgroup rules

[bookmark: properties-secgrouprule]Properties SecGroupRule
	Property
	Type
	Description

	uuid
	string
	Unique identifier of the rule

	ingress
	boolean
	The defined security group rule is for ingress if True

	egress
	boolean
	The defined security group rule is for egress if True

	remote_group
	string
	Name of the group if the rule is defined by group instead of IP range

	protocol
	string
	The protocol used such as TCP, UDP, ICMP

	from_port
	integer
	Port range starting port

	to_port
	integer
	Port range ending port

	cidr
	string
	The source or destination network in CIDR notation, e.g., 129.79.0.0/16

	timestamp
	
	timestamps associated with the resource

[bookmark: paths-17]Paths
[bookmark: cloudmeshsecgroup]/cloudmesh/secgroup
[bookmark: get-cloudmeshsecgroup]GET /cloudmesh/secgroup
Returns all secgroups
Responses
	Code
	Description
	Schema

	200
	secgroup info
	

[bookmark: post-cloudmeshsecgroup]POST /cloudmesh/secgroup
Creates a new secgroup
Responses
	Code
	Description
	Schema

	201
	Created
	

Parameters
	Name
	Located in
	Description
	Required
	Schema

	secgroup
	body
	The new secgroup to create
	False
	Secgroup

[bookmark: cloudmeshsecgroupsecgroup]/cloudmesh/secgroup/{secgroup}
[bookmark: get-cloudmeshsecgroupsecgroup]GET /cloudmesh/secgroup/{secgroup}
Find a secgroup by name
Responses
	Code
	Description
	Schema

	200
	secgroup info
	Secgroup

Parameters
	Name
	Located in
	Description
	Required
	Schema

	secgroup
	path
	name of the security group
	True
	

[bookmark: cloudmeshsecgroupsecgrouprule]/cloudmesh/secgroup/{secgroup}/rule
[bookmark: get-cloudmeshsecgroupsecgrouprule]GET /cloudmesh/secgroup/{secgroup}/rule
Get the defined security group rules for a specified secgroup
Responses
	Code
	Description
	Schema

	200
	security group rules info
	

Parameters
	Name
	Located in
	Description
	Required
	Schema

	secgroup
	path
	name of the security group
	True
	

[bookmark: post-cloudmeshsecgroupsecgrouprule]POST /cloudmesh/secgroup/{secgroup}/rule
Creates a new rule in secgroup
Responses
	Code
	Description
	Schema

	201
	Created
	

Parameters
	Name
	Located in
	Description
	Required
	Schema

	secgroup
	path
	The name of the new secgroup to create
	True
	

	secgroupobj
	body
	The secgroup object to create
	True
	SecGroupRule

[bookmark: cloudmeshsecgroupsecgroupruleruleid]/cloudmesh/secgroup/{secgroup}/rule/{ruleid}
[bookmark: get-cloudmeshsecgroupsecgroupruleruleid]GET /cloudmesh/secgroup/{secgroup}/rule/{ruleid}
Creates a new rule in secgroup
Responses
	Code
	Description
	Schema

	200
	The security group rule definition info
	SecGroupRule

Parameters
	Name
	Located in
	Description
	Required
	Schema

	secgroup
	path
	The named of the secgroup from which the rule will be deleted
	True
	

	ruleid
	path
	The uuid of the rule to be deleted
	True
	

[bookmark: Xa714a2292305df0402a19f98d8ed7b9a9ab4b89]DELETE /cloudmesh/secgroup/{secgroup}/rule/{ruleid}
Creates a new rule in secgroup
Responses
	Code
	Description
	Schema

	202
	Deletion request accepted and will be performed
	

Parameters
	Name
	Located in
	Description
	Required
	Schema

	secgroup
	path
	The named of the secgroup from which the rule will be deleted
	True
	

	ruleid
	path
	The uuid of the rule to be deleted
	True
	

[bookmark: secgroup.yaml]secgroup.yaml
swagger: "2.0"
info:
 version: 3.1.1
 x-date: 02-12-2019
 x-status: defined
 title: Secgroup
 description: |-

 A security group defines the incoming and outgoing security rules
 which can then be assigned to a node when a node is being created.
 Once the node is up the connection to and from the node will be
 decided by the security group rules, in addition to any other possible
 rules applied on network devices or from the instance"s firewall
 settings.
 A security group may have one or multiple rules and a node may be
 associated with one or more security groups.

 termsOfService: "https://github.com/cloudmesh-community/nist/blob/master/LICENSE.txt"
 contact:
 name: NIST BDRA Interface Subgroup
 url: https://cloudmesh-community.github.io/nist
 license:
 name: Apache
host: localhost:8080
schemes:
 - http
consumes:
 - application/json
produces:
 - application/json
paths:
 /cloudmesh/secgroup:
 get:
 tags:
 - Secgroup
 summary: Returns all secgroups
 description: Returns all secgroups
 operationId: cloudmesh.secgroup.get
 produces:
 - application/json
 responses:
 "200":
 description: secgroup info
 schema:
 type: array
 items:
 $ref: "#/definitions/Secgroup"
 post:
 tags:
 - Secgroup
 summary: Create a new secgroup
 description: Create a new secgroup
 operationId: cloudmesh.secgroup.add
 parameters:
 - in: body
 name: secgroup
 description: The new secgroup to create
 schema:
 $ref: "#/definitions/Secgroup"
 responses:
 "201":
 description: Created
 "/cloudmesh/secgroup/{secgroup}":
 get:
 tags:
 - Secgroup
 summary: Find a secgroup by name
 description: Find a secgroup by name
 operationId: cloudmesh.secgroup.get_by_name
 parameters:
 - name: secgroup
 description: name of the security group
 in: path
 required: true
 type: string
 produces:
 - application/json
 responses:
 "200":
 description: secgroup info
 schema:
 $ref: "#/definitions/Secgroup"
 "/cloudmesh/secgroup/{secgroup}/rule":
 get:
 tags:
 - Secgroup
 summary: Get the defiend security group rules for a specified secgroup
 description: Get the defiend security group rules for a specified secgroup
 operationId: cloudmesh.secgroup.get_rules_in_secgroup
 parameters:
 - name: secgroup
 description: name of the security group
 in: path
 required: true
 type: string
 produces:
 - application/json
 responses:
 "200":
 description: security group rules info
 schema:
 type: array
 items:
 $ref: "#/definitions/SecGroupRule"
 post:
 tags:
 - Secgroup
 summary: Create a new rule in the specified security group
 description: Create a new rule in secgroup
 operationId: cloudmesh.secgroup.add_rule_in_secgroup
 parameters:
 - in: path
 name: secgroup
 required: true
 description: The name of the new secgroup to create
 type: string
 - in: body
 name: secgroupobj
 required: true
 description: The secgroup object to create
 schema:
 $ref: "#/definitions/SecGroupRule"
 responses:
 "201":
 description: Created
 "/cloudmesh/secgroup/{secgroup}/rule/{ruleid}":
 get:
 tags:
 - Secgroup
 summary: Get an existing rule from the specified security group
 description: Create a new rule in secgroup
 operationId: cloudmesh.secgroup.get_rule_by_id_in_secgroup
 parameters:
 - in: path
 name: secgroup
 required: true
 description: The named of the secgroup from which the rule will be deleted
 type: string
 - in: path
 name: ruleid
 required: true
 description: The uuid of the rule to be deleted
 type: string
 responses:
 "200":
 description: The security group rule definition info
 schema:
 $ref: "#/definitions/SecGroupRule"
 delete:
 tags:
 - Secgroup
 summary: Delete an existing rule from the specified security group
 description: Create a new rule in secgroup
 operationId: cloudmesh.secgroup.delete_rule_by_id_in_secgroup
 parameters:
 - in: path
 name: secgroup
 required: true
 description: The named of the secgroup from which the rule will be deleted
 type: string
 - in: path
 name: ruleid
 required: true
 description: The uuid of the rule to be deleted
 type: string
 responses:
 "202":
 description: Deletion request accepted and will be performed
definitions:
 Secgroup:
 type: object
 description: the security group object
 properties:
 uuid:
 type: string
 description: Unique identifier of the security group
 name:
 type: string
 description: name of the secgroup
 description:
 type: string
 description: describes what the secgroup is for
 rules:
 type: array
 description: List of Secgroup rules
 items:
 $ref: "#/definitions/SecGroupRule"
 SecGroupRule:
 type: object
 description: security group rule
 properties:
 uuid:
 type: string
 description: Unique identifier of the rule
 ingress:
 type: boolean
 description: The defined security group rule is for ingress if True
 egress:
 type: boolean
 description: The defined security group rule is for egress if True
 remote_group:
 type: string
 description: Name of the group if the rule is defined by group instead of IP range
 protocol:
 type: string
 description: The protocol used such as TCP, UDP, ICMP
 from_port:
 type: integer
 description: Port range starting port
 to_port:
 type: integer
 description: Port range ending port
 cidr:
 type: string
 description: The source or destination network in CIDR notation, e.g., 129.79.0.0/16
 timestamp:
 description: timestamps associated with the resource
 $ref: '#/definitions/Timestamp'
[bookmark: nic][bookmark: _Toc1569591][bookmark: _Toc1641041]Nic
A service to store Network Interface Controller (NIC) information. All of them are stored as Strings.
[bookmark: properties-nic-1]Properties Nic
	Property
	Type
	Description

	name
	string
	name of the nic

	kind
	string
	kind of the nic, such as wireless

	mac
	string
	the mac address

	ip
	string
	the ip address

	mask
	string
	the network mask

	broadcast
	string
	the broadcast address

	gateway
	string
	the gateway address

	mtu
	integer
	the mtu

	bandwidth
	integer
	the bandwidth in bps

	timestamp
	
	timestamps associated with the resource

[bookmark: paths-18]Paths
[bookmark: cloudmeshnics]/cloudmesh/nics
[bookmark: get-cloudmeshnics]GET /cloudmesh/nics
Returns all nics
Responses
	Code
	Description
	Schema

	200
	nic info
	

[bookmark: put-cloudmeshnics]PUT /cloudmesh/nics
Creates a new nic
Responses
	Code
	Description
	Schema

	201
	Created
	

Parameters
	Name
	Located in
	Description
	Required
	Schema

	nic
	body
	The new nic to create
	False
	Nic

[bookmark: cloudmeshnicname]/cloudmesh/nic/{name}
[bookmark: get-cloudmeshnicname]GET /cloudmesh/nic/{name}
Returns a nic
Responses
	Code
	Description
	Schema

	200
	nic info
	Nic

Parameters
	Name
	Located in
	Description
	Required
	Schema

	name
	path
	Get nic info by name
	True
	

[bookmark: nic.yaml]nic.yaml
swagger: "2.0"
info:
 version: 3.0.1
 title: Nic
 description: |-

 A service to store Network Interface Controller (NIC) information. All of
 them are stored as Strings.

 * TODO: assign and improve

 termsOfService: 'https://github.com/cloudmesh-community/nist/blob/master/LICENSE.txt'
 contact:
 name: NIST BDRA Interface Subgroup
 url: https://cloudmesh-community.github.io/nist
 license:
 name: Apache
host: localhost:8080
schemes:
 - http
consumes:
 - application/json
produces:
 - application/json
paths:
 /cloudmesh/nics:
 get:
 tags:
 - NIC
 summary: Returns all nics
 description: Returns all nics
 operationId: cloudmesh.nic.get
 produces:
 - application/json
 responses:
 '200':
 description: nic info
 schema:
 type: array
 items:
 $ref: '#/definitions/Nic'
 put:
 tags:
 - NIC
 summary: Create a new nic
 description: Create a new nic
 operationId: cloudmesh.nic.put
 parameters:
 - in: body
 name: nic
 description: The new nic to create
 schema:
 $ref: '#/definitions/Nic'
 responses:
 '201':
 description: Created
 '/cloudmesh/nic/{name}':
 get:
 tags:
 - NIC
 summary: Returns a nic
 description: Returns a nic
 operationId: cloudmesh.nic.get_by_name
 parameters:
 - name: name
 description: Get nic info by name
 in: path
 required: true
 type: string
 produces:
 - application/json
 responses:
 '200':
 description: nic info
 schema:
 $ref: '#/definitions/Nic'
definitions:
 Nic:
 type: object
 description: the nic
 properties:
 name:
 type: string
 description: name of the nic
 kind:
 type: string
 description: kind of the nic, such as wireless
 mac:
 type: string
 description: the mac address
 ip:
 type: string
 description: the ip address
 mask:
 type: string
 description: the network mask
 broadcast:
 type: string
 description: the broadcast address
 gateway:
 type: string
 description: the gateway address
 mtu:
 type: integer
 description: the mtu
 bandwidth:
 type: integer
 description: the bandwidth in bps
 timestamp:
 description: timestamps associated with the resource
 $ref: '#/definitions/Timestamp'

[bookmark: compute-management---containers][bookmark: _Toc1569592][bookmark: _Toc1641042]Compute Management - Containers
[bookmark: containers][bookmark: _Toc1569593][bookmark: _Toc1641043]Containers
A service to store containers.
[bookmark: properties-container]Properties Container
	Property
	Type
	Description

	name
	string
	name of the container

	version
	string
	version of the container

	label
	string
	label of the container

	type
	string
	type of the container

	definition
	string
	definition or manifest of the container

	imgURI
	string
	URI of the container

	tags
	array[string]
	tags of the container

	timestamp
	
	timestamps associated with the resource

[bookmark: paths-19]Paths
[bookmark: cloudmeshcontainer]/cloudmesh/container
[bookmark: get-cloudmeshcontainer]GET /cloudmesh/container
Returns all containers
Responses
	Code
	Description
	Schema

	200
	containers info
	

[bookmark: put-cloudmeshcontainer]PUT /cloudmesh/container
Creates a new container
Responses
	Code
	Description
	Schema

	201
	Created
	

Parameters
	Name
	Located in
	Description
	Required
	Schema

	containers
	body
	The new containers to create
	False
	Container

[bookmark: cloudmeshcontainername]/cloudmesh/container/{name}
[bookmark: get-cloudmeshcontainername]GET /cloudmesh/container/{name}
Returns a container
Responses
	Code
	Description
	Schema

	200
	containers info
	Container

Parameters
	Name
	Located in
	Description
	Required
	Schema

	name
	path
	name of the container
	True
	

[bookmark: containers.yaml]containers.yaml
swagger: "2.0"
info:
 version: 3.1.1
 x-date: 02-15-2019
 x-status: defined
 title: Containers
 description: |-

 A service to store containers.

 termsOfService: https://github.com/cloudmesh-community/nist/blob/master/LICENSE.txt
 contact:
 name: NIST BDRA Interface Subgroup
 url: https://cloudmesh-community.github.io/nist
 license:
 name: Apache
host: localhost:8080
schemes:
 - http
consumes:
 - application/json
produces:
 - application/json
paths:
 /cloudmesh/container:
 get:
 tags:
 - Container
 summary: Returns all containers
 description: Returns all containers
 operationId: cloudmesh.conteiners.get
 produces:
 - application/json
 responses:
 200:
 description: containers info
 schema:
 type: array
 items:
 $ref: '#/definitions/Container'
 put:
 tags:
 - Container
 summary: Create a new containers
 description: Create a new containers
 operationId: cloudmesh.containers.put
 parameters:
 - in: body
 name: containers
 description: The new containers to create
 schema:
 $ref: '#/definitions/Container'
 responses:
 201:
 description: Created
 '/cloudmesh/container/{name}':
 get:
 tags:
 - Container
 summary: Returns a containers
 description: Returns a containers
 operationId: cloudmesh.containers.get_by_name
 parameters:
 - name: name
 description: name of the container
 in: path
 required: true
 type: string
 produces:
 - application/json
 responses:
 200:
 description: containers info
 schema:
 $ref: '#/definitions/Container'
definitions:
 Container:
 type: object
 description: A record representing a container
 properties:
 name:
 type: string
 description: name of the container
 version:
 type: string
 description: version of the container
 label:
 type: string
 description: label of the container
 type:
 type: string
 description: type of the container
 definition:
 type: string
 description: definition or manifest of the container
 imgURI:
 type: string
 description: URI of the container
 tags:
 type: array
 description: tags of the container
 items:
 type: string
 timestamp:
 description: timestamps associated with the resource
 $ref: '#/definitions/Timestamp'
[bookmark: compute-management---functions][bookmark: _Toc1569594][bookmark: _Toc1641044]Compute Management - Functions
[bookmark: microservice][bookmark: _Toc1569595][bookmark: _Toc1641045]Microservice
As part of microservices, a function with parameters that can be invoked has been defined.
[bookmark: properties-microservice]Properties Microservice
	Property
	Type
	Description

	name
	string
	name of the microservice

	endpoint
	string
	the end point of the microservice

	function
	string
	the function the microservice represents

	timestamp
	
	timestamps associated with the resource

[bookmark: paths-20]Paths
[bookmark: cloudmeshmicroservices]/cloudmesh/microservices
[bookmark: get-cloudmeshmicroservices]GET /cloudmesh/microservices
Returns all microservices
Responses
	Code
	Description
	Schema

	200
	microservice info
	

[bookmark: put-cloudmeshmicroservices]PUT /cloudmesh/microservices
Creates a new microservice
Responses
	Code
	Description
	Schema

	201
	Created
	

Parameters
	Name
	Located in
	Description
	Required
	Schema

	microservice
	body
	The new microservice to create
	False
	Microservice

[bookmark: cloudmeshmicroservicename]/cloudmesh/microservice/{name}
[bookmark: get-cloudmeshmicroservicename]GET /cloudmesh/microservice/{name}
Returns a microservice
Responses
	Code
	Description
	Schema

	200
	microservice info
	Microservice

Parameters
	Name
	Located in
	Description
	Required
	Schema

	name
	path
	Get microservie info by name
	True
	

[bookmark: microservice.yaml]microservice.yaml
swagger: "2.0"
info:
 version: 3.0.1
 title: Microservice
 description: |-

 As part of microservices, a function with parameters that can be
 invoked has been defined.

 * TODO: assign and improve

 termsOfService: 'https://github.com/cloudmesh-community/nist/blob/master/LICENSE.txt'
 contact:
 name: NIST BDRA Interface Subgroup
 url: https://cloudmesh-community.github.io/nist
 license:
 name: Apache
host: localhost:8080
schemes:
 - http
consumes:
 - application/json
produces:
 - application/json
paths:
 /cloudmesh/microservices:
 get:
 tags:
 - Microservice
 summary: Returns all microservices
 description: Returns all microservices
 operationId: cloudmesh.microservice.get
 produces:
 - application/json
 responses:
 '200':
 description: microservice info
 schema:
 type: array
 items:
 $ref: '#/definitions/Microservice'
 put:
 tags:
 - Microservice
 summary: Create a new microservice
 description: Create a new microservice
 operationId: cloudmesh.microservice.put
 parameters:
 - in: body
 name: microservice
 description: The new microservice to create
 schema:
 $ref: '#/definitions/Microservice'
 responses:
 '201':
 description: Created
 '/cloudmesh/microservice/{name}':
 get:
 tags:
 - Microservice
 summary: Returns a microservice
 description: Returns a microservice
 operationId: cloudmesh.microservice.get_by_name
 parameters:
 - name: name
 in: path
 description: Get microservie info by name
 required: true
 type: string
 produces:
 - application/json
 responses:
 '200':
 description: microservice info
 schema:
 $ref: '#/definitions/Microservice'
definitions:
 Microservice:
 type: object
 description: the microservice
 properties:
 name:
 type: string
 description: name of the microservice
 endpoint:
 type: string
 description: the end point of the microservice
 function:
 type: string
 description: the function the microservice represents
 timestamp:
 description: timestamps associated with the resource
 $ref: '#/definitions/Timestamp'
[bookmark: batch-processing][bookmark: _Toc1569596][bookmark: _Toc1641046]Batch Processing
[bookmark: batchjob][bookmark: _Toc1569597][bookmark: _Toc1641047]Batchjob
VM is a service to manage virtual machines.
[bookmark: properties-vm-1]Properties VM
	Property
	Type
	Description

	provider
	string
	Name of the provider

	id
	string
	a unique id for the vm

	name
	string
	the name of the vm

	image
	string
	the image for the vm

	region
	string
	an optional region

	size
	string
	The size of the vm

	state
	string
	The state of the vm

	private_ips
	string
	The private IPs

	public_ips
	string
	The public IPS

	metadata
	string
	The meta data passed along to the VM

	timestamp
	
	timestamps associated with the resource

[bookmark: paths-21]Paths
[bookmark: vm-2]/vm
[bookmark: get-vm-1]GET /vm
Returns the list of the vms
Responses
	Code
	Description
	Schema

	200
	Listing the VMs
	

Parameters
	Name
	Located in
	Description
	Required
	Schema

	cloud
	query
	specify the cloud from which we list, if omitted all clouds are returned.
	False
	

[bookmark: batchjob.yaml]batchjob.yaml
swagger: "2.0"
info:
 version: 3.0.2
 x-date: 10-30-2018
 title: Batch Job
 description: |-

 Computing jobs that can run without end user interaction, and are
 scheduled through queuing systems, are called batch jobs. Batch
 jobs are used to minimize human interaction and allow the
 submission and scheduling of many jobs in parallel while
 attempting to utilize the resources through a resource scheduler
 more efficiently or simply in sequential order. Batch processing
 scarce resources managed by batch queues are highly optimized and
 in many cases, provide significant performance advantages over
 other services. Disadvantages include the limited and preinstalled
 software stacks that, in some cases, do not allow the latest
 applications to run.

 termsOfService: https://github.com/cloudmesh-community/nist/blob/master/LICENSE.txt
 contact:
 name: NIST BDRA Interface Subgroup
 url: https://cloudmesh-community.github.io/nist
 license:
 name: Apache
host: localhost:8080
schemes:
 - http
consumes:
 - application/json
produces:
 - application/json
paths:
 /cloudmesh/batch/job:
 get:
 tags:
 - Batchjob
 summary: Returns all batchjobs
 description: Returns all batchjobs
 operationId: cloudmesh.batchjob.get
 produces:
 - application/json
 responses:
 200:
 description: batchjob info
 schema:
 type: array
 items:
 $ref: '#/definitions/Batchjob'
 put:
 tags:
 - Batchjob
 summary: Create a new batchjob
 description: Create a new batchjob
 operationId: cloudmesh.batchjob.add
 parameters:
 - in: body
 name: batchjob
 description: The new batchjob to create
 schema:
 $ref: '#/definitions/Batchjob'
 responses:
 201:
 description: Created
 '/cloudmesh/batch/job/{name}':
 get:
 tags:
 - Batchjob
 summary: Returns a batchjob
 description: Returns a batchjob
 operationId: cloudmesh.batchjob.get_by_name
 parameters:
 - name: name
 description: Get batchjob info by name
 in: path
 required: true
 type: string
 produces:
 - application/json
 responses:
 200:
 description: batchjob info
 schema:
 $ref: '#/definitions/Batchjob'
definitions:
 Batchjob:
 type: object
 description: the batchjob
 properties:
 name:
 type: string
 description: name of the batchjob
 output:
 type: string
 description: name of the output file(s) TBD array
 script:
 type: string
 description: the script of the job
 cmd:
 type: string
 description: a command can be scpecified alternatively to the script
 queue:
 type: string
 description: the queue name
 id:
 type: string
 description: after submissin the job gets an id
 cluster:
 type: string
 description: the name of the cluster th job is submitted to
 time:
 type: string
 description: the time the job is to be started
 duration:
 type: string
 description: the duration of the job
 script_path:
 type: string
 description: the path to a script
 nodes:
 type: string
 description: the nodes used to execute the job
 dir:
 type: string
 description: the directory in which to execute the job
 timestamp:
 description: timestamps associated with the resource
 $ref: '#/definitions/Timestamp'
[bookmark: slurmjob][bookmark: _Toc1569598][bookmark: _Toc1641048]Slurmjob
VM is a service to manage virtual machines.
[bookmark: properties-vm-2]Properties VM
	Property
	Type
	Description

	provider
	string
	Name of the provider

	id
	string
	a unique id for the vm

	name
	string
	the name of the vm

	image
	string
	the image for the vm

	region
	string
	an optional region

	size
	string
	The size of the vm

	state
	string
	The state of the vm

	private_ips
	string
	The private IPs

	public_ips
	string
	The public IPS

	metadata
	string
	The meta data passed along to the VM

	timestamp
	
	timestamps associated with the resource

[bookmark: paths-22]Paths
[bookmark: vm-3]/vm
[bookmark: get-vm-2]GET /vm
Returns the list of the vms
Responses
	Code
	Description
	Schema

	200
	Listing the VMs
	

Parameters
	Name
	Located in
	Description
	Required
	Schema

	cloud
	query
	specify the cloud from which we list, if ommitted all clouds are returned.
	False
	

[bookmark: slurmjob.yaml]slurmjob.yaml
swagger: "2.0"
info:
 version: 3.0.0
 x-date: 02-08-2019
 title: Batch Job
 description: |-

 Computing jobs based on a slurm script that can be run on a remote
 slurm cluster without end user interaction are called Slurm jobs.
 Slurm jobs are helpful to minimize the user's interaction with the
 slurm workload manager and allows seamless communication to the remote
 server. The script as well as the accompanied files are automatically
 transfered to the remote slurm cluster and results are automatically
 collected when ready.

 termsOfService: https://github.com/cloudmesh-community/nist/blob/master/LICENSE.txt
 contact:
 name: NIST BDRA Interface Subgroup
 url: https://cloudmesh-community.github.io/nist
 license:
 name: Apache
host: localhost:8080
schemes:
 - http
consumes:
 - application/json
produces:
 - application/json
paths:
 /cloudmesh/slurmjob/job:
 get:
 tags:
 - Slurmjob
 summary: Returns all slurmjobs
 description: Returns all slurmjobs
 operationId: cloudmesh.slurmjob.get
 produces:
 - application/json
 responses:
 200:
 description: slurmjob info
 schema:
 type: array
 items:
 $ref: '#/definitions/Slurmjob'
 put:
 tags:
 - Slurmjob
 summary: Create a new slurmjob
 description: Create a new slurmjob
 operationId: cloudmesh.slurmjob.add
 parameters:
 - name: slurmjob
 in: body
 description: The new slurmjob to create
 schema:
 $ref: '#/definitions/Slurmjob'
 responses:
 200:
 description: Created
 '/cloudmesh/slurmjob/job/{name}':
 get:
 tags:
 - Slurmjob
 summary: Returns a slurmjob
 description: Returns a slurmjob
 operationId: cloudmesh.slurmjob.get_by_name
 parameters:
 - name: name
 description: name of the slurmjob
 in: path
 required: true
 type: string
 produces:
 - application/json
 responses:
 200:
 description: slurmjob info
 schema:
 $ref: '#/definitions/Slurmjob'
definitions:
 Slurmjob:
 type: object
 description: the batch job
 properties:
 name:
 type: string
 description: name of the batch job
 suffix:
 type: string
 description: the suffix of the filename for a job
 clustername:
 type: string
 description: slurm cluster on which the job is gonna run
 input_type:
 type: string
 description: type of the input for the script that is going to be run on remote cluster, possible values are params OR params+file
 remote_path:
 type: string
 description: path in the remotes on which the scripts is gonna be copied to and ran from
 items:
 $ref: '#/definitions/Path'
 slurm_script:
 type: string
 description: path of the slurm script
 items:
 $ref: '#/definitions/Path'
 job_script:
 type: string
 description: path of the file that is going to be run on the cluster via slurm script
 items:
 $ref: '#/definitions/Path'
 argfile:
 type: string
 description: path of the file that has to be passed to the file as an argument (if any)
 items:
 $ref: '#/definitions/Path'
 local_folder:
 type: string
 description: local path to which the results are gonna be copied
 items:
 $ref: '#/definitions/Path'
 timestamp:
 description: timestamps associated with the resource
 $ref: '#/definitions/Timestamp'

 Path:
 type: object
 description: path information
 properties:
 folder_path:
 type: string
 description: absolute path to the folder
 file_path:
 type: string
 description: absolute path to the file
 file_name:
 type: string
 description: the name of the script/file
[bookmark: reservation][bookmark: _Toc1569599][bookmark: _Toc1641049]Reservation
[bookmark: reservation-1][bookmark: _Toc1569600][bookmark: _Toc1641050]Reservation
Some services may consume a considerable amount of resources, necessitating the reservation of resources.
[bookmark: properties-reservation]Properties Reservation
	Property
	Type
	Description

	name
	string
	name of the reservation

	service
	string
	the name of the service on which we reserve

	description
	string
	the description of the reservation

	start
	string
	the start time and date

	end
	string
	the end time and date

	timestamp
	
	timestamps associated with the resource

[bookmark: paths-23]Paths
[bookmark: cloudmeshreservations]/cloudmesh/reservations
[bookmark: get-cloudmeshreservations]GET /cloudmesh/reservations
Returns all reservations
Responses
	Code
	Description
	Schema

	200
	reservation info
	

[bookmark: put-cloudmeshreservations]PUT /cloudmesh/reservations
Creates a new reservation
Responses
	Code
	Description
	Schema

	201
	Created
	

Parameters
	Name
	Located in
	Description
	Required
	Schema

	reservation
	body
	The new reservation to create
	False
	Reservation

[bookmark: cloudmeshreservationname]/cloudmesh/reservation/{name}
[bookmark: get-cloudmeshreservationname]GET /cloudmesh/reservation/{name}
Returns a reservation
Responses
	Code
	Description
	Schema

	200
	reservation info
	Reservation

Parameters
	Name
	Located in
	Description
	Required
	Schema

	name
	path
	Get reservation info by name
	True
	

[bookmark: reservation.yaml]reservation.yaml
swagger: "2.0"
info:
 version: 3.0.2
 x-date: 10-30-2018
 title: Reservation
 description: |-

 Some services may consume a considerable amount of resources,
 necessitating the reservation of resources.

 * TODO: assign and improve

 termsOfService: 'https://github.com/cloudmesh-community/nist/blob/master/LICENSE.txt'
 contact:
 name: NIST BDRA Interface Subgroup
 url: https://cloudmesh-community.github.io/nist
 license:
 name: Apache
host: localhost:8080
schemes:
 - http
consumes:
 - application/json
produces:
 - application/json
paths:
 /cloudmesh/reservations:
 get:
 tags:
 - Reservation
 summary: Returns all reservations
 description: Returns all reservations
 operationId: cloudmesh.reservation.get
 produces:
 - application/json
 responses:
 '200':
 description: reservation info
 schema:
 type: array
 items:
 $ref: '#/definitions/Reservation'
 put:
 tags:
 - Reservation
 summary: Create a new reservation
 description: Create a new reservation
 operationId: cloudmesh.reservation.add
 parameters:
 - in: body
 name: reservation
 description: The new reservation to create
 schema:
 $ref: '#/definitions/Reservation'
 responses:
 '201':
 description: Created
 '/cloudmesh/reservation/{name}':
 get:
 tags:
 - Reservation
 summary: Returns a reservation
 description: Returns a reservation
 operationId: cloudmesh.reservation.get_by_name
 parameters:
 - name: name
 description: Get reservation info by name
 in: path
 required: true
 type: string
 produces:
 - application/json
 responses:
 '200':
 description: reservation info
 schema:
 $ref: '#/definitions/Reservation'
definitions:
 Reservation:
 type: object
 description: the reservation
 properties:
 name:
 type: string
 description: name of the reservation
 service:
 type: string
 description: the name of the service on which we reserve
 description:
 type: string
 description: the description of the reservation
 start:
 type: string
 format: date
 description: the start time and date
 end:
 type: string
 format: date
 description: the end time and date
 timestamp:
 description: timestamps associated with the resource
 $ref: '#/definitions/Timestamp'
[bookmark: data-streams][bookmark: _Toc1569601][bookmark: _Toc1641051]Data Streams
[bookmark: stream][bookmark: _Toc1569602][bookmark: _Toc1641052]Stream
The stream object describes a data flow, providing information about the rate and number of items exchanged while issuing requests to the stream. A stream may return data items in a specific format that is defined by the stream.
[bookmark: properties-stream]Properties Stream
	Property
	Type
	Description

	name
	string
	name of the stream

	format
	string
	format of the stream

	rate
	integer
	the rate of messages

	limit
	integer
	the limit of items send

	timestamp
	
	timestamps associated with the resource

[bookmark: paths-24]Paths
[bookmark: cloudmeshstreams]/cloudmesh/streams
[bookmark: get-cloudmeshstreams]GET /cloudmesh/streams
Returns all streams
Responses
	Code
	Description
	Schema

	200
	stream info
	

[bookmark: put-cloudmeshstreams]PUT /cloudmesh/streams
Creates a new stream
Responses
	Code
	Description
	Schema

	201
	Created
	

Parameters
	Name
	Located in
	Description
	Required
	Schema

	stream
	body
	The new stream to create
	False
	Stream

[bookmark: cloudmeshstreamname]/cloudmesh/stream/{name}
[bookmark: get-cloudmeshstreamname]GET /cloudmesh/stream/{name}
Returns a stream
Responses
	Code
	Description
	Schema

	200
	stream info
	Stream

Parameters
	Name
	Located in
	Description
	Required
	Schema

	name
	path
	Get stream info by name
	True
	

[bookmark: stream.yaml]stream.yaml
swagger: "2.0"
info:
 version: 3.0.2
 x-date: 10-30-2018
 title: Stream
 description: |-

 The stream object describes a data flow, providing information
 about the rate and number of items exchanged while issuing requests
 to the stream. A stream may return data items in a specific format
 that is defined by the stream.

 * TODO: assign and improve

 termsOfService: 'https://github.com/cloudmesh-community/nist/blob/master/LICENSE.txt'
 contact:
 name: NIST BDRA Interface Subgroup
 url: https://cloudmesh-community.github.io/nist
 license:
 name: Apache
host: localhost:8080
schemes:
 - http
consumes:
 - application/json
produces:
 - application/json
paths:
 /cloudmesh/streams:
 get:
 tags:
 - Stream
 summary: Returns all streams
 description: Returns all streams
 operationId: cloudmesh.stream.get
 produces:
 - application/json
 responses:
 '200':
 description: stream info
 schema:
 type: array
 items:
 $ref: '#/definitions/Stream'
 put:
 tags:
 - Stream
 summary: Create a new stream
 description: Create a new stream
 operationId: cloudmesh.stream.add
 parameters:
 - in: body
 name: stream
 description: The new stream to create
 schema:
 $ref: '#/definitions/Stream'
 responses:
 '201':
 description: Created
 '/cloudmesh/stream/{name}':
 get:
 tags:
 - Stream
 summary: Returns a stream
 description: Returns a stream
 operationId: cloudmesh.stream.get_by_name
 parameters:
 - name: name
 description: Get stream info by name
 in: path
 required: true
 type: string
 produces:
 - application/json
 responses:
 '200':
 description: stream info
 schema:
 $ref: '#/definitions/Stream'
definitions:
 Stream:
 type: object
 description: the stream
 properties:
 name:
 type: string
 description: name of the stream
 format:
 type: string
 description: format of the stream
 rate:
 type: integer
 description: the rate of messages
 limit:
 type: integer
 description: the limit of items send
 timestamp:
 description: timestamps associated with the resource
 $ref: '#/definitions/Timestamp'
[bookmark: filter][bookmark: _Toc1569603][bookmark: _Toc1641053]Filter
Filters can operate on a variety of objects and reduce the information received based on a search criterion.
[bookmark: properties-filter]Properties Filter
	Property
	Type
	Description

	name
	string
	name of the filter

	function
	string
	the function of the data exchanged in the stream

	kind
	string
	the filter kind or type

	timestamp
	
	timestamps associated with the resource

[bookmark: paths-25]Paths
[bookmark: cloudmeshfilters]/cloudmesh/filters
[bookmark: get-cloudmeshfilters]GET /cloudmesh/filters
Returns all filters
Responses
	Code
	Description
	Schema

	200
	filter info
	

[bookmark: put-cloudmeshfilters]PUT /cloudmesh/filters
Creates a new filter
Responses
	Code
	Description
	Schema

	201
	Created
	

Parameters
	Name
	Located in
	Description
	Required
	Schema

	filter
	body
	The new filter to create
	False
	Filter

[bookmark: cloudmeshfiltername]/cloudmesh/filter/{name}
[bookmark: get-cloudmeshfiltername]GET /cloudmesh/filter/{name}
Returns a filter
Responses
	Code
	Description
	Schema

	200
	filter info
	Filter

Parameters
	Name
	Located in
	Description
	Required
	Schema

	name
	path
	Get filter info by name
	True
	

[bookmark: filter.yaml]filter.yaml
swagger: "2.0"
info:
 version: 3.0.2
 x-date: 10-30-2018
 title: Filter
 description: |-

 Filters can operate on a variety of objects and reduce the
 information received based on a search criterion.

 * TODO: assign for review and improvement

 termsOfService: 'https://github.com/cloudmesh-community/nist/blob/master/LICENSE.txt'
 contact:
 name: NIST BDRA Interface Subgroup
 url: https://cloudmesh-community.github.io/nist
 license:
 name: Apache
host: localhost:8080
schemes:
 - http
consumes:
 - application/json
produces:
 - application/json
paths:
 /cloudmesh/filters:
 get:
 tags:
 - Filter
 summary: Returns all filters
 description: Returns all filters
 operationId: cloudmesh.filter.get
 produces:
 - application/json
 responses:
 '200':
 description: filter info
 schema:
 type: array
 items:
 $ref: '#/definitions/Filter'
 put:
 tags:
 - Filter
 summary: Create a new filter
 description: Create a new filter
 operationId: cloudmesh.filter.put
 parameters:
 - in: body
 name: filter
 description: The new filter to create
 schema:
 $ref: '#/definitions/Filter'
 responses:
 '201':
 description: Created
 '/cloudmesh/filter/{name}':
 get:
 tags:
 - Filter
 summary: Returns a filter
 description: Returns a filter
 operationId: cloudmesh.filter.get_by_name
 parameters:
 - name: name
 description: Get filter info by name
 in: path
 required: true
 type: string
 produces:
 - application/json
 responses:
 '200':
 description: filter info
 schema:
 $ref: '#/definitions/Filter'
definitions:
 Filter:
 type: object
 description: the filter
 properties:
 name:
 type: string
 description: name of the filter
 function:
 type: string
 description: the function of the data exchanged in the stream
 kind:
 type: string
 description: the filter kind or type
 timestamp:
 description: timestamps associated with the resource
 $ref: '#/definitions/Timestamp'
[bookmark: mapreduce][bookmark: _Toc1569604][bookmark: _Toc1641054]MapReduce
[bookmark: hadoop][bookmark: _Toc1569605][bookmark: _Toc1641055]Hadoop
A service to store the information of a hadoop deployment definition. All of the attributes are stored as Strings.
[bookmark: properties-hadoop]Properties Hadoop
	Property
	Type
	Description

	name
	string
	name of the hadoop cluster

	deployment_type
	string
	the type of the deployer such as ansible

	deployment_git
	string
	the url where to find the deployment scripts

	resource_managers
	integer
	number of resource managers

	namenodes
	integer
	number of name nodes

	datanodes
	integer
	number of data nodes

	historynodes
	integer
	number of history nodes

	journalnodes
	integer
	number of journal nodes

	yarn
	boolean
	true if yarn is used

	hdfs
	boolean
	true if hdfs is used

	timestamp
	
	timestamps associated with the resource

[bookmark: paths-26]Paths
[bookmark: cloudmeshhadoop]/cloudmesh/hadoop
[bookmark: get-cloudmeshhadoop]GET /cloudmesh/hadoop
Returns all hadoops
Responses
	Code
	Description
	Schema

	200
	hadoop info
	

[bookmark: put-cloudmeshhadoop]PUT /cloudmesh/hadoop
Creates a new hadoop
Responses
	Code
	Description
	Schema

	201
	Created
	

Parameters
	Name
	Located in
	Description
	Required
	Schema

	hadoop
	body
	The new hadoop to create
	False
	Hadoop

[bookmark: cloudmeshhadoopname]/cloudmesh/hadoop/{name}
[bookmark: get-cloudmeshhadoopname]GET /cloudmesh/hadoop/{name}
Returns a hadoop
Responses
	Code
	Description
	Schema

	200
	hadoop info
	Hadoop

Parameters
	Name
	Located in
	Description
	Required
	Schema

	name
	path
	name of the hadoop
	True
	

[bookmark: hadoop.yaml]hadoop.yaml
swagger: "2.0"
info:
 version: 3.1.1
 x-date: 02-15-2019
 x-status: defined
 title: Hadoop
 description: |-

 A service to store the information of a hadoop deployment definition. All of the
 attributes are stored as Strings.

 * TODO: assign for review and imporvement

 termsOfService: 'https://github.com/cloudmesh-community/nist/blob/master/LICENSE.txt'
 contact:
 name: NIST BDRA Interface Subgroup
 url: https://cloudmesh-community.github.io/nist
 license:
 name: Apache
host: localhost:8080
schemes:
 - http
consumes:
 - application/json
produces:
 - application/json
paths:
 /cloudmesh/hadoop:
 get:
 tags:
 - Hadoop
 summary: Returns all hadoops
 description: Returns all hadoops
 operationId: cloudmesh.hadoop.get
 produces:
 - application/json
 responses:
 '200':
 description: hadoop info
 schema:
 type: array
 items:
 $ref: '#/definitions/Hadoop'
 put:
 tags:
 - Hadoop
 summary: Create a new hadoop
 description: Create a new hadoop
 operationId: cloudmesh.hadoop.put
 parameters:
 - in: body
 name: hadoop
 description: The new hadoop to create
 schema:
 $ref: '#/definitions/Hadoop'
 responses:
 '201':
 description: Created
 '/cloudmesh/hadoop/{name}':
 get:
 tags:
 - Hadoop
 summary: Returns a hadoop
 description: Returns a hadoop
 operationId: cloudmesh.hadoop.get_by_name
 parameters:
 - name: name
 in: path
 description: name of the hadoop
 required: true
 type: string
 produces:
 - application/json
 responses:
 '200':
 description: hadoop info
 schema:
 $ref: '#/definitions/Hadoop'
definitions:
 Hadoop:
 type: object
 description: An object representing a Hadoop deployment definition
 properties:
 name:
 type: string
 description: name of the hadoop cluster
 deployment_type:
 type: string
 description: the type of the deployer such as ansible
 deployment_git:
 type: string
 description: the url where to find the deployment scripts
 resource_managers:
 type: integer
 description: number of resource managers
 namenodes:
 type: integer
 description: number of name nodes
 datanodes:
 type: integer
 description: number of data nodes
 historynodes:
 type: integer
 description: number of history nodes
 journalnodes:
 type: integer
 description: number of journal nodes
 yarn:
 type: boolean
 description: true if yarn is used
 hdfs:
 type: boolean
 description: true if hdfs is used
 timestamp:
 description: timestamps associated with the resource
 $ref: '#/definitions/Timestamp'
[bookmark: deployment][bookmark: _Toc1569606][bookmark: _Toc1641056]Deployment
[bookmark: deployment-1][bookmark: _Toc1569607][bookmark: _Toc1641057]Deployment
A service to store deployment, value, type information. All of them are stored as Strings.
[bookmark: properties-deployment]Properties Deployment
	Property
	Type
	Description

	cluster
	string
	the name of the cluster

	stack
	array[object]
	ERROR: description missing

	timestamp
	
	timestamps associated with the resource

[bookmark: paths-27]Paths
[bookmark: cloudmeshdeployments]/cloudmesh/deployments
[bookmark: get-cloudmeshdeployments]GET /cloudmesh/deployments
Returns all deployments
Responses
	Code
	Description
	Schema

	200
	deployment info
	

[bookmark: put-cloudmeshdeployments]PUT /cloudmesh/deployments
Creates a new deployment
Responses
	Code
	Description
	Schema

	201
	Created
	

Parameters
	Name
	Located in
	Description
	Required
	Schema

	deployment
	body
	The new deployment to create
	False
	Deployment

[bookmark: cloudmeshdeploymentname]/cloudmesh/deployment/{name}
[bookmark: get-cloudmeshdeploymentname]GET /cloudmesh/deployment/{name}
Returns a deployment
Responses
	Code
	Description
	Schema

	200
	deployment info
	Deployment

Parameters
	Name
	Located in
	Description
	Required
	Schema

	name
	path
	Get deployment info by name
	True
	

[bookmark: deployment.yaml]deployment.yaml
swagger: "2.0"
info:
 version: 3.0.2
 x-date: 10-30-2018
 title: Deployment
 description: |-

 A service to store deployment, value, type information. All of
 them are stored as Strings.

 * TODO: assign for review and improvement

 termsOfService: https://github.com/cloudmesh-community/nist/blob/master/LICENSE.txt
 contact:
 name: NIST BDRA Interface Subgroup
 url: https://cloudmesh-community.github.io/nist
 license:
 name: Apache
host: localhost:8080
schemes:
 - http
consumes:
 - application/json
produces:
 - application/json
paths:
 /cloudmesh/deployments:
 get:
 tags:
 - Deployment
 summary: Returns all deployments
 description: Returns all deployments
 operationId: cloudmesh.deployment.get
 produces:
 - application/json
 responses:
 200:
 description: deployment info
 schema:
 type: array
 items:
 $ref: '#/definitions/Deployment'
 put:
 tags:
 - Deployment
 summary: Create a new deployment
 description: Create a new deployment
 operationId: cloudmesh.deployment.add
 parameters:
 - in: body
 name: deployment
 description: The new deployment to create
 schema:
 $ref: '#/definitions/Deployment'
 responses:
 '201':
 description: Created
 '/cloudmesh/deployment/{name}':
 get:
 tags:
 - Deployment
 summary: Returns a deployment
 description: Returns a deployment
 operationId: cloudmesh.deployment.get_by_name
 parameters:
 - name: name
 description: Get deployment info by name
 in: path
 required: true
 type: string
 produces:
 - application/json
 responses:
 '200':
 description: deployment info
 schema:
 $ref: '#/definitions/Deployment'
definitions:
 Deployment:
 type: object
 description: the deployment
 properties:
 cluster:
 type: string
 description: the name of the cluster
 stack:
 type: array
 items:
 type: object
 #layers: string
 timestamp:
 description: timestamps associated with the resource
 $ref: '#/definitions/Timestamp'
[bookmark: status-codes-and-error-responses][bookmark: _Toc1569608]
[bookmark: _Toc1641058]Status Codes and Error Responses
In case of an error or a successful response, the response header contains a HTTP code (see https://tools.ietf.org/html/rfc7231). The response body usually contains the following:
The HTTP response code;
An accompanying message for the HTTP response code; and
A field or object where the error occurred.
[bookmark: _Toc1641065]Table 2: HTTP Response Codes
	HTTP Response
	Description Code

	200
	OK success code, for GET or HEAD request.

	201
	Created success code, for POST request.

	204
	No Content success code, for DELETE request.

	300
	The value returned when an external ID exists in more than one record.

	304
	The request content has not changed since a specified date and time.

	400
	The request could not be understood.

	401
	The session ID or OAuth token used has expired or is invalid.

	403
	The request has been refused.

	404
	The requested resource could not be found.

	405
	The method specified in the Request-Line isn’t allowed for the resource specified in the URI.

	415
	The entity in the request is in a format that’s not supported by the specified method.

[bookmark: acronyms-and-terms][bookmark: _Toc1569609]
[bookmark: _Toc1641059]Acronyms and Terms
The following acronyms and terms are used in this volume.
ACID	Atomicity, Consistency, Isolation, Durability
API	Application Programming Interface
ASCII	American Standard Code for Information Interchange
BASE	Basically Available, Soft state, Eventual consistency
Container	See http://csrc.nist.gov/publications/drafts/800-180/sp800-180_draft.pdf
Cloud Computing	The practice of using a network of remote servers hosted on the Internet to store, manage, and process data, rather than a local server or a personal computer. See http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf.
DevOps	A clipped compound of software DEVelopment and information technology OPerationS
Deployment	The action of installing software on resources
HTTP	HyperText Transfer Protocol HTTPS HTTP Secure
Hybrid Cloud 	See http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf.
IaaS	Infrastructure as a Service SaaS Software as a Service
ITL	Information Technology Laboratory
Microservice Architecture	Is an approach to build applications based on many smaller modular services. Each module supports a specific goal and uses a simple, well-defined interface to communicate with other sets of services.
NBD-PWG	NIST Big Data Public Working Group
NBDRA	NIST Big Data Reference Architecture
NBDRAI	NIST Big Data Reference Architecture Interface
NIST	National Institute of Standards and Technology
OS	Operating System
REST	REpresentational State Transfer
Replica	A duplicate of a file on another resource to avoid costly transfer costs in case of frequent access.
Serverless Computing	Serverless computing specifies the paradigm of function as a service (FaaS). It is a cloud computing code execution model in which a cloud provider manages the function deployment and utilization while clients can utilize them. The charge model is based on execution of the function rather than the cost to manage and host the VM or container.
Software Stack	A set of programs and services that are installed on a resource to support applications.
Virtual Filesysyem	An abstraction layer on top of a distributed physical file system to allow easy access to the files by the user or application.
Virtual Machine	A virtual machine (VM) is a software computer that, like a physical computer, runs an operating system and applications. The VM is composed of a set of specification and configuration files and is backed by the physical resources of a host.
Virtual Cluster	A virtual cluster is a software cluster that integrate either VMs, containers, or physical resources into an agglomeration of compute resources. A virtual cluster allows users to authenticate and authorize to the virtual compute nodes to utilize them for calculations. Optional high-level services that can be deployed on a virtual cluster may simplify interaction with the virtual cluster or provide higher-level services.
Workflow	The sequence of processes or tasks
WWW	World Wide Web

[bookmark: bibliography][bookmark: _Toc1569610]
[bookmark: _Toc1641060]Bibliography
[1]	W. L. Chang (Co-Chair), N. Grady (Subgroup Co-chair), and NIST Big Data Public Working Group, “NIST Big Data Interoperability Framework: Volume 1, Big Data Definitions (NIST SP 1500-1r1 VERSION 2),” Jun. 2018.
[2]	W. L. Chang (Co-Chair), N. Grady (Subgroup Co-chair), and NIST Big Data Public Working Group, “NIST Big Data Interoperability Framework: Volume 2, Big Data Taxonomies (NIST SP 1500-2r1 VERSION 2),” Jun. 2018.
[3]	W. L. Chang (Co-Chair) and G. Fox (Subgroup Co-chair), “NIST Big Data Interoperability Framework: Volume 3, Big Data Use Cases and General Requirements (NIST SP 1500-3r1 VERSION 2),” Jun. 2018.
[4]	W. L. Chang (Co-Chair), A. Roy (Subgroup Co-chair), M. Underwood (Subgroup Co-chair), and NIST Big Data Public Working Group, “NIST Big Data Interoperability Framework: Volume 4, Big Data Security and Privacy (NIST SP 1500-4r1 VERSION 2),” Jun. 2018.
[5]	W. L. Chang (Co-Chair), S. Mishra (Editor), and NIST Big Data Public Working Group, “NIST Big Data Interoperability Framework: Volume 5, Big Data Architectures White Paper Survey (NIST SP 1500-5 VERSION 1),” Sep. 2015.
[6]	W. L. Chang (Co-Chair), D. Boyd (Subgroup Co-chair), and NIST Big Data Public Working Group, “NIST Big Data Interoperability Framework: Volume 6, Big Data Reference Architecture (NIST SP 1500-6r1 VERSION 2),” Jun. 2018.
[7]	W. L. Chang (Co-Chair), R. Reinsch (Subgroup Co-chair), and NIST Big Data Public Working Group, “NIST Big Data Interoperability Framework: Volume 7, Big Data Standards Roadmap (NIST SP 1500-7r1 VERSION 2),” Jun. 2018.
[8]	W. L. Chang (Co-Chair), R. Reinsch (Subgroup Co-chair), and NIST Big Data Public Working Group, “NIST Big Data Interoperability Framework: Volume 9, Adoption and Modernization (NIST SP 1500-10 VERSION 1),” Jun. 2018.
[9]	T. White House Office of Science and Technology Policy, “Big Data is a Big Deal,” OSTP Blog, 2012. [Online]. Available: http://www.whitehouse.gov/blog/2012/03/29/big-data-big-deal. [Accessed: 21-Feb-2014].
[10]	Department of Defense, “The DoDAF Architecture Framework Version 2.02,” Apr. 2010.

image2.gif

image3.jpeg

image4.emf

image5.jpeg

image1.emf

