[bookmark: _GoBack]NIST Special Publication XXX-XXX




DRAFT NIST Big Data Interoperability Framework:
Volume 1, Definitions






NIST Big Data Public Working Group
Definitions and Taxonomies Subgroup




Draft Release 1
November 11, 2014
http://dx.doi.org/10.6028/NIST.SP.XXX

[image: ]




NIST Special Publication xxx-xxx
Information Technology Laboratory

DRAFT NIST Big Data Interoperability Framework:
Volume 1, Definitions

Draft Release 1







NIST Big Data Public Working Group (NBD-PWG)
Definitions and Taxonomies Subgroup
National Institute of Standards and Technology
Gaithersburg, MD 20899




November 2014



[image: http://physics.nist.gov/Images/doc.bw.gif]
U. S. Department of Commerce
Penny Pritzker, Secretary

National Institute of Standards and Technology
Dr. Willie E. May, Under Secretary of Commerce for Standards and Technology and Director



Authority
This publication has been developed by National Institute of Standards and Technology (NIST) to further its statutory responsibilities …

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and binding on Federal agencies ….





Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose. 
There may be references in this publication to other publications currently under development by NIST in accordance with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, may be used by Federal agencies even before the completion of such companion publications. Thus, until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For planning and transition purposes, Federal agencies may wish to closely follow the development of these new publications by NIST. 
Organizations are encouraged to review all draft publications during public comment periods and provide feedback to NIST. All NIST Information Technology Laboratory publications, other than the ones noted above, are available at http://www.nist.gov/publication-portal.cfm.


Comments on this publication may be submitted to:
National Institute of Standards and Technology
Attn: Information Technology Laboratory
100 Bureau Drive (Mail Stop 8900) Gaithersburg, MD 20899-8930




Reports on Computer Systems Technology
The Information Technology Laboratory (ITL) at NIST promotes the U.S. economy and public welfare by providing technical leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analyses to advance the development and productive use of information technology. ITL’s responsibilities include the development of management, administrative, technical, and physical standards and guidelines for the cost-effective security and privacy of other than national security-related information in Federal information systems. This document reports on ITL’s research, guidance, and outreach efforts in Information Technology and its collaborative activities with industry, government, and academic organizations.

National Institute of Standards and Technology Special Publication XXX-series
xxx pages (MM DD, 2014)
DISCLAIMER

This document has been prepared by NIST and describes issues in Big Data computing. 

Certain commercial entities, equipment, or material may be identified in this document in order to describe a concept adequately. Such identification is not intended to imply recommendation or endorsement by the NIST, nor is it intended to imply that these entities, materials, or equipment are necessarily the best available for the purpose. 







Acknowledgements
This document reflects the contributions and discussions by the membership of the NIST Big Data Public Working Group (NBD-PWG), co-chaired by Wo Chang of the NIST Information Technology Laboratory, Robert Marcus of ET-Strategies, and Chaitanya Baru, University of California San Diego Supercomputer Center. 
The document contains input from members of the NBD-PWG Definitions and Taxonomies Subgroup, led by Nancy Grady (SAIC), Natasha Balac (SDSC), and Eugene Luster (R2AD).
NIST SP xxx-series, Version 1 has been collaboratively authored by the NBD-PWG. As of the date of this publication, there are over six hundred NBD-PWG participants from industry, academia, and government. Federal agency participants include the National Archives and Records Administration (NARA), National Aeronautics and Space Administration (NASA), National Science Foundation (NSF), and the U.S. Departments of Agriculture, Commerce, Defense, Energy, Health and Human Services, Homeland Security, Transportation, Treasury, and Veterans Affairs.
NIST would like to acknowledge the specific contributions to this volume by the following NBD-PWG members:
	Deborah Blackstock, MITRE Corporation
David Boyd, L3 Data Tactics
Pw Carey, Compliance Partners, LLC
Wo Chang, National Institute of Standards and Technology
Yuri Demchenko, University of Amsterdam
Frank Farance, Consultant
Geoffrey Fox, University of Indiana
Ian Gorton, CMU
Nancy Grady, SAIC
Karen Guertler, Consultant 
Keith Hare, JCC Consulting, Inc.
Christine Hawkinson, U.S. Bureau of Land Management
Thomas Huang, NASA
Philippe Journeau, ResearXis
Pavithra Kenjige, PK Technologies
	Orit Levin, Microsoft
Eugene Luster, U.S. Defense Information Systems Agency/R2AD LLC
Ashok Malhotra, Oracle
Bill Mandrick, L-3 Data Tactics
Robert Marcus, ET-Strategies
Lisa Martinez, Consultant
Gary Mazzaferro, AlloyCloud, Inc.
William Miller, MaCT USA
Sanjay Mishra, Verizon	
Bob Natale, Mitre
Rod Peterson, U.S. Department of Veterans Affairs
John Rogers, HP
Arnab Roy, Fujitsu 
Mark Underwood, Krypton Brothers LLC
William Vorhies, Predictive Modeling LLC
Tim Zimmerman, Consultant
Alicia Zuniga-Alvarado, Consultant


The editors for this document were Nancy Grady and Wo Chang.


DRAFT NIST BIG DATA INTEROPERABILITY FRAMEWORK: VOLUME 1, DEFINITIONS

v
[bookmark: _Toc385425369][bookmark: _Toc385500461][bookmark: _Toc385501763][bookmark: _Toc385502543][bookmark: _Toc386029080]Table of Contents
Executive Summary	vi
1	Introduction	1
1.1	Background	1
1.2	Scope and Objectives of the Definitions and Taxonomies Subgroup	2
1.3	Report Production	2
1.4	Report Structure	3
1.5	Future Work of this Volume	3
2	Big Data and Data Science Definitions	4
2.1	Big Data Definitions	4
2.2	Data Science Definitions	7
3	Big Data Elements	10
3.1	Data Elements	10
3.2	Dataset at Rest	10
3.3	Dataset in Motion	11
3.4	Analytics 	12
3.5	Big Data Metrics	13
3.6	Big Data Security and Privacy	13
3.7	Data Governance	13
4	Big Data Patterns (fundamental concepts)	14
4.1	Data Process	14
4.2	Data Process Ordering Changes	14
4.3	Transactions	14
4.3.1	ACID Transactions	15
4.3.2	BASE Transactions	15
4.3.3	Brewer’s CAP Theorem	16
4.3.4	Read Versus Write Transactions	16
4.4	Data Analytics Time Window	16
4.4.1	Real-time Analytics	16
4.4.2	Batch Historical Analytics	16
4.5	Storage Medium Changes	17
4.6	Parallelism	17
Appendix A: Index of Terms	1
Appendix C: Acronyms	1
Appendix D: References	1

Figure
Figure 1: Skills Needed in Data Science	7



[bookmark: _Toc385500462][bookmark: _Toc403640410]Executive Summary
The NIST Big Data Public Working Group (NBD-PWG) Definitions and Taxonomy Subgroup prepared this NIST Big Data Interoperability Framework: Volume 1, Definitions to address fundamental concepts needed to understand the new paradigm for data applications, collectively known as Big Data, and the analytic processes collectively known as data science. While Big Data has been defined in a myriad of ways, the shift to a Big Data paradigm occurs when the scale of the data leads to a horizontally-scaled data management system. Data science combines various technologies, techniques, and theories from various fields, mostly related to computer science and statistics, to obtain actionable knowledge from data. This report seeks to clarify the underlying concepts of Big Data and data science to enhance communication among Big Data producers and consumers. By defining concepts related to Big Data and data science, a common terminology can be used among Big Data practitioners.  
The NIST Big Data Interoperability Framework consists of seven volumes, each of which addresses a specific key topic, resulting from the work of the NBD-PWG. In addition to this volume, the other volumes are as follows:
Volume 2, Taxonomies 
Volume 3, Use Cases and General Requirements 
Volume 4, Security and Privacy Requirements
Volume 5, Architectures White Paper Survey
Volume 6, Reference Architectures
Volume 7, Technology Roadmap
The authors emphasize that the information in these volumes represents a work in progress and will evolve in future releases and as additional perspectives are available.
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[bookmark: _Toc385500463][bookmark: _Toc403640411]Introduction
[bookmark: _Toc385500464][bookmark: _Toc403640412]Background
[bookmark: _Toc385500465]There is broad agreement among commercial, academic, and government leaders about the remarkable potential of Big Data to spark innovation, fuel commerce, and drive progress. Big Data is the common term used to describe the deluge of data in our networked, digitized, sensor-laden, information-driven world. The availability of vast data resources carries the potential to answer questions previously out of reach, including the following:
· How can we reliably detect a potential pandemic early enough to intervene? 
· Can we predict new materials with advanced properties before these materials have ever been synthesized? 
· How can we reverse the current advantage of the attacker over the defender in guarding against cyber-security threats? 
However, there is also broad agreement on the ability of Big Data to overwhelm traditional approaches. The growth rates for data volumes, speeds, and complexity are outpacing scientific and technological advances in data analytics, management, transport, and data user spheres. 
Despite the widespread agreement on the inherent opportunities and current limitations of Big Data, a lack of consensus on some important, fundamental questions continues to confuse potential users and stymie progress. These questions include the following: 
· What attributes define Big Data solutions? 
· How is Big Data different from traditional data environments and related applications? 
· What are the essential characteristics of Big Data environments? 
· How do these environments integrate with currently deployed architectures? 
· What are the central scientific, technological, and standardization challenges that need to be addressed to accelerate the deployment of robust Big Data solutions?
Within this context, on March 29, 2012, the White House announced the Big Data Research and Development Initiative.[endnoteRef:1] The initiative’s goals include helping to accelerate the pace of discovery in science and engineering, strengthening national security, and transforming teaching and learning by improving our ability to extract knowledge and insights from large and complex collections of digital data. [1:  The White House, Office of Science and Technology Policy. “Big Data is a Big Deal”, http://www.whitehouse.gov/blog/2012/03/29/big-data-big-deal (accessed February 21, 2014)] 

Six federal departments and their agencies announced more than $200 million in commitments spread across more than 80 projects, which aim to significantly improve the tools and techniques needed to access, organize, and draw conclusions from huge volumes of digital data. The initiative also challenged industry, research universities, and nonprofits to join with the federal government to make the most of the opportunities created by Big Data. 
Motivated by the White House’s initiative and public suggestions, the National Institute of Standards and Technology (NIST) has accepted the challenge to stimulate collaboration among industry professionals to further the secure and effective adoption of Big Data. As one result of NIST’s Cloud and Big Data Forum held January 15–17, 2013, there was strong encouragement for NIST to create a public working group for the development of a Big Data Technology Roadmap. Forum participants noted that this roadmap should define and prioritize Big Data requirements, including interoperability, portability, reusability, extensibility, data usage, analytics, and technology infrastructure. In doing so, the roadmap would accelerate the adoption of the most secure and effective Big Data techniques and technology.
On June 19, 2013, the NIST Big Data Public Working Group (NBD-PWG) was launched with overwhelming participation from industry, academia, and government from across the nation. The scope of the NBD-PWG involves forming a community of interests from all sectors—including industry, academia, and government—with the goal of developing a consensus on definitions, taxonomies, secure reference architectures, security and privacy requirements, and a technology roadmap. Such a consensus would create a vendor-neutral, technology- and infrastructure-independent framework that would enable Big Data stakeholders to identify and use the best analytics tools for their processing and visualization requirements on the most suitable computing platform and cluster, while also allowing value-added from Big Data service providers.
The Draft NIST Big Data Interoperability Framework contains the following seven volumes:
· Volume 1, Definitions (this volume)
· Volume 2, Taxonomies 
· Volume 3, Use Case and General Requirements 
· Volume 4, Security and Privacy Requirements
· Volume 5, Architectures White Paper Survey
· Volume 6, Reference Architectures 
· Volume 7, Technology Roadmap Summary
[bookmark: _Toc403640413]Scope and Objectives of the Definitions and Taxonomies Subgroup
The NBD-PWG Definitions and Taxonomy Subgroup focused on identifying Big Data concepts and defining related terms in areas such as data science, reference architecture, and patterns.
The aim of this document is to provide a common vocabulary for those involved with Big Data. For managers, the terms will distinguish the concepts needed to understand this changing field. For procurement officers, this document will provide the framework for discussing organizational needs, and distinguishing among offered approaches. For marketers, this document will provide the means to promote solutions and innovations. For the technical community, it will provide a common language to better differentiate the specific offerings.
[bookmark: _Toc385500466][bookmark: _Toc403640414]Report Production
Big Data and data science are being used as buzzwords and are composites of many concepts. To better identify those terms, the NBD-PWG Definitions and Taxonomy Subgroup first addressed the individual concepts needed in this disruptive field. Then, the two over-arching buzzwords, Big Data and data science, and the concepts they encompass were clarified.
To keep the topic of data and data systems manageable, the Subgroup attempted to limit discussions to differences affected by the existence of Big Data. Expansive topics such as data type or analytics taxonomies and metadata were not explored. However, the Subgroup did include the concepts involved in other methodologies that are needed to understand the new Big Data methodologies.
Terms were developed independent of a specific tool or implementation, to avoid highlighting specific implementations, but also to stay general enough for the inevitable changes in the field.
The Subgroup is aware that some fields, such as legal, use specific language that may differ from the definitions provided herein. The current version reflects the breadth of knowledge of the Subgroup members. During the comment period, the broader community is requested to address any domain conflicts caused by the terminology used in this report.
[bookmark: _Toc385500467][bookmark: _Toc403640415]Report Structure
This document seeks to clarify the meanings of the broad terms Big Data and data science, which are discussed at length in Section 2. The more elemental concepts and terms that shed additional insights are discussed in Section 3. Section 4 explores several more detailed concepts. This first version of Volume 1, Descriptions describes some of the fundamental concepts that will be important to determine categories or functional capabilities that represent architecture choices. By understanding the underlying communication and storage patterns, the strengths and weaknesses of different approaches for different needs will become clearer.
Tightly coupled information can be found in the other volumes of the NIST Big Data Interoperability Framework. Volume 2, Taxonomy provides a description of the more detailed components of the NIST Big Data Reference Architecture (NBDRA) presented in Volume 6, Reference Architecture. Security and privacy related concepts are described in detail in Volume 4, Security and Privacy. To understand how these systems are architected to meet users’ needs, the reader is referred to Volume 3, Use Cases and General Requirements. Volume 7, Technology Roadmap recaps the framework established in Volumes 1 through 6, discusses NBDRA related standards, and explores the ecosystem surrounding the NBDRA. Comparing the related sections in these volumes will provide a more comprehensive understanding of the consensus of the NBD-PWG.

[bookmark: _Toc403640416]Future Work of this Volume
Subsection focus: Discuss the future updates that are planned for this Volume. We should mention that we want to harmonize with JTC1 efforts.
This volume is a first attempt of the working group to provide order and clarity to an emerging and rapidly changing field. Given the breadth of the types of data, the fields of study, the technologies, and the techniques, it has been a challenge to distill from the many viewpoints a consistent core set of definitions to begin to frame the discussion and understanding of this new paradigm. As the field matures, this document will also need to mature in order to accommodate new innovations in the field. To ensure the concepts are accurate, future working group tasks will consist of defining the different patterns of communications between Big Data resources to better clarify the different approaches being taken. This will provide further clarity to the broader community seeking to understand the field.
A number of other efforts are underway to address the community’s needs in the Big Data space. ISO/JTC 1 formed a Study Group on Big Data to identify areas where current standards efforts could be applied to big data, and areas that might need additional attention. Four meetings were held around the world, and input was solicited from all ISO/JTC participating national bodies. The NIST PBDWG both contributed to this discussion through the US National body INCITS Big Data Ad Hoc, and benefited from that process. The ISO/JTC response to the Study Group report was to provide some guidance to existing committes, and to form a JTC 1 Working Group 9 on Big Data.  Going forward the NIST working group will want to refine this work to remain in sync with the JTC and other working group efforts.
The NPBDWG is currently collaborating with the Research Data Alliance, which is exploring the interfaces between components. We have an initial representation in Section 4 Big Data Engineering patterns, but that section will improve through the additional work in this partnership.
The NPBDWG has been in communication with the TCP-xHD Big Data Committee, which been addressing system benchmarks. Information from their efforts will be included in future versions of this report.

<Mention CSC Taxonomy and S&P?>
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[bookmark: _Toc385500468][bookmark: _Toc403640417]Big Data and Data Science Definitions
Section focus: Set the stage by describing the two concepts that are central to the NBDIF discussion: Big Data and Data Science. 
The rate of growth in the amount of data generated and stored has been increasing exponentially. Data growth rates are considered to be faster than Moore’s Law would indicate if applied to data volumes—implying more than doubling in volume every eighteen months. This data explosion is creating opportunities for new ways of combining and using data to find value, as well as providing significant challenges due to the size of the data being managed and analyzed. One significant shift is in the amount of unstructured data. Structured data has typically been the focus of most enterprise analytics, and has been handled through use of the relational data model. Unstructured data, such as micro-texts, relationship data, images and videos, have seen such an explosion in quantity and the trend is to try to incorporate this data to generate value. The central benefit of Big Data analytics is the ability to process large amounts and various types of information. Big Data does not imply that the current data volumes are simply “bigger” than before, or bigger than current techniques can efficiently handle. The need for greater performance or efficiency happens on a continual basis. In contrast, Big Data truly represents a fundamental change in the architecture needed to efficiently handle current datasets. 
In the evolution of data systems, there have been a number of times when the need for efficient, cost effective data analysis has forced a change in existing technologies. For example the move to a relational model occurred when methods to reliably handle changes to structured data led to the shift to a data storage paradigm that modeled relational algebra. That was a fundamental shift in data handling. The current revolution in technologies referred to as Big Data, has arisen because the relational data model can no longer efficiently handle all the current needs for analysis of large and often unstructured datasets. It is not just that data is a bit larger than before, as it has been steadily getting larger for decades. The Big Data revolution is just that, a one-time fundamental shift in architecture, just as the shift to the relational model was a one-time shift. Just as relational databases evolved to greater efficiencies over decades, so too will Big Data technologies continue to evolve. Many of the conceptual underpinnings of Big Data have been around for years, but the last decade has seen an explosion in their maturation and application to scaled data systems.
To understand what this revolution is, we need to consider the interplay of several distinct dimensions; including the characteristics of the datasets, the analysis of the datasets, the performance of the systems that handle the data, and the business considerations of cost effectiveness. The term Big Data has been used to describe a number of concepts, in part because of the interplay of these four dimensions.
In the following sections, we break down the two broad concepts, Big Data and data science into specific individual terms and concepts.
[bookmark: _Toc385500469][bookmark: _Toc403640418]Big Data Definitions
Big Data refers to the inability of traditional data architectures to efficiently handle the new datasets. Characteristics of Big Data that force new architectures are the characteristics of volume (i.e., the size of the dataset) and variety (i.e., data from multiple repositories, domains, or types), and the data in motion characteristics of velocity (i.e., rate of flow) and variability (i.e., the change in velocity). These characteristics, volume, variety, velocity, and variability, are known colloquially as the ‘V’s’ of Big Data and are further discussed in Section 3. Each of these characteristics influences the overall design of a Big Data system, resulting in different data system architectures or different data lifecycle process orderings to achieve needed efficiencies. 
Big Data consists of extensive datasets, primarily in the characteristics of volume, variety, velocity, and/or variability that require a scalable architecture for efficient storage, manipulation, and analysis.
Note that this definition contains the interplay between the characteristics of the data, the need for a system architecture that is scalable in order to achieve the needed performance and cost efficiency. There are two fundamentally different methods for system scaling, vertical or horizontal scaling. Vertical scaling implies increasing the system parameters of processing speed and memory for greater performance. This approach requires significant investment of time and cost for development. The alternate method is to scale horizontally, to make use of a number of individual resources. It is this horizontal scaling that is at the heart of the Big Data revolution.
The Big Data paradigm consists of the distribution of data systems across horizontally-coupled, independent resources to achieve the scalability needed for the efficient processing of extensive datasets.
This new paradigm leads to a number of conceptual definitions that suggest Big Data is when the scale of the data causes the management of the data to be a significant driver in the design of the system architecture.  This definition does not explicitly refer to the horizontal scaling which is at the heart of the Big Data paradigm.
Fundamentally, the Big Data paradigm is a shift in data system architectures from monolithic systems with vertical scaling (i.e., adding more power, such as faster processors or disks, to existing machines) into a horizontally-scaled system (i.e., adding more machines to the available collection) that uses a loosely coupled set of resources in parallel. This type of parallelization shift began over 20 years ago, in the simulation community, when scientific simulations began using massively parallel processing (MPP) systems. 
Massively parallel processing refers to a multitude of individual processors working in parallel to execute a particular program. 
In different combinations of splitting the code and data across independent processors, computational scientists were able to greatly extend their simulation capabilities. This, of course, introduced a number of complications in such areas as message passing, data movement, latency in the consistency across resources, load balancing, and system inefficiencies, while waiting on other resources to complete their computational tasks. 
The Big Data paradigm of today is similar. Data systems need a level of extensibility that matches the scaling in the data. To get that level of extensibility, different mechanisms are needed to distribute data and data retrieval processes across loosely-coupled resources. 
While the methods to achieve efficient scalability across resources will continually evolve, this paradigm shift (in analogy to the prior shift in the simulation community) is a one-time occurrence. Eventually, a new paradigm shift will no doubt occur beyond this ‘crowdsourcing’ of a processing or data system that spans multiple, horizontally-coupled resources. That future revolution will need to be described with new terminology. 
Big Data essentially focuses on the self-referencing viewpoint that data is big because it requires scalable systems to handle it. Conversely, architectures with better scaling have come about because of the need to handle Big Data. It is difficult to delineate a size requirement for a dataset to be considered Big Data. Data is usually considered “Big” if the use of new scalable architectures provides a cost or performance efficiency over the relational data model. In other words, similar performance cannot be achieved in a traditional, single platform relational database. This circular relationship between the characteristics of the data and the performance of data systems leads to different definitions for Big Data if only one aspect is considered.
Some definitions for Big Data focus on the systems innovations required because the characteristics of Big Data. 
Big Data engineering includes advanced techniques that harness independent resources for building scalable data systems when the characteristics of the datasets require new architectures for efficient storage, manipulation, and analysis.
Note again that we again have a coupled definition, that Big Data engineering is used when the characteristics of the data require it. New engineering techniques in the data layer have been driven by the growing prominence of data types that cannot be handled efficiently in a traditional relational model. The need for scalable access in structured data has led to software built on the name-value pair or non-relational table paradigms. The rise in importance of document analysis has spawned a document-oriented database paradigm, and the increasing importance of relationship data has led to efficiencies in the use of graph-oriented data storage.
The new non-relational model database paradigms are typically referred to as NoSQL systems, alternately defined as “no SQL” or “not only SQL” (these concepts are further discussed in Section 3.) The problem with identifying Big Data storage paradigms as NoSQL is, first, that it describes the storage of data with respect to a set theory based language for query and retrieval of data, and, second, that there is a growing capability in the application of the SQL query language against the new non-relational data repositories. While NoSQL is in such common usage that it will continue to refer to the new data models beyond the relational model, the term itself will hopefully be replaced with a more suitable term, since it is misguided to name a set of new storage paradigms with respect to a query language currently in use against that storage. 
Non-relational models, also known as NoSQL, refer to logical data models that do not follow relational algebra for the storage and manipulation of data.
Another related engineering technique to be aware of is the federated database system, which is related to the variety characteristic of Big Data. 
A federated database system is a type of meta-database management system,which transparently maps multiple autonomous database systems into a single federated database.
A federated database is thus a relational database system comprised of underlying relational database systems. Big Data systems can likewise pull a variety of data from many sources, but the underlying repositories do not all have to conform to the relational model.
Note that for systems and analysis processes, the Big Data paradigm shift also causes changes in the traditional data lifecycle processes. One description of the end-to-end data lifecycle categorizes the process steps as collection, preparation, analysis, and action. Different Big Data use cases can be characterized in terms of the dataset characteristics and in terms of the time window for the end-to-end data lifecycle. Dataset characteristics change the data lifecycle processes in different ways, for example in the point in the lifecycle at which the data is placed in persistent storage. In a traditional relational model, the data is stored after preparation (for example after the extract-transform-load and cleansing processes). In a high velocity use case, the data is prepared and analyzed for alerting, and only then is the data (or aggregates of the data) given a persistent storage. In a volume use case, the data is often stored in the raw state in which it was produced—before being cleansed and organized. The consequence of persistence of data in its raw state is that a schema or model for the data is only applied when the data is retrieved for preparation and analysis. This Big Data concept is described as schema-on-read.
Schema-on-read is the application of a data schema through preparation steps such as transformations, cleansing, and integration at the time the data is read from the database. 
Another concept of Big Data is often referred to as moving the processing to the data, not the data to the processing. 
Computational portability is the movement of the computation to the location of the data.
The implication is that data is too extensive to be queried and moved into another resource for analysis, so the analysis program is instead distributed to the data-holding resources, with only the results being aggregated on a remote resource.  Additional system concepts are the interoperability (ability for tools to work together), reusability (ability to apply tools from one domain to another), and extendibility (ability to add or modify existing tools for new domains).  These system concepts are not specific to Big Data, but their presence in Big Data can be understood in the examination of a Big Data reference architecture, which is discussed in Volume 6 Reference Architecture of this series.
Additional concepts used in reference to the term Big Data refer to changes in analytics, which will be discussed in Section 2.2, Data Science Definitions. A number of other terms (particularly terms starting with the letter V) are also used, several of which refer to the data science process or its benefit instead of new Big Data characteristics.  Some of these additional terms include veracity (i.e., accuracy of the data), value (i.e., value of the analytics to the organization), volatility (i.e., tendency for data structures to change over time), and validity (i.e., quality and accuracy of the data). While these characteristics and others, including quality control, metadata, and data provenance long pre-dated Big Data, the actual usage may vary when applied to Big Data.  Several of these terms are discussed with respect to Big Data analytics in Section 3.4.
At its heart, Big Data refers to the extensibility of data repositories and data processing across horizontally-scaled resources, in the same way the compute-intensive simulation community embraced MPP two decades ago. By working out methods for communication among resources, the same scaling is now available to data-intensive applications.
[bookmark: _Toc385500470][bookmark: _Toc403640419]Data Science Definitions
In its purest form, data science is the fourth paradigm of science, following theory, experiment, and computational science. The fourth paradigm is a term coined by Dr. Jim Gray in 2007 to refer to the conduct of data analysis as an empirical science, learning directly from data itself. Data science as a paradigm would refer to the formulation of a hypothesis, the collection of the data—new or pre-existing—to address the hypothesis, and the analytical confirmation or denial of the hypothesis (or the determination that additional information or study is needed.) As in any experimental science, the end result could in fact be that the original hypothesis itself needs to be reformulated. The key concept is that data science is an empirical science, performing the scientific process directly on the data. Note that the hypothesis may be driven by a business need, or can be the restatement of a business need in terms of a technical hypothesis. 
The data science paradigm is extraction of actionable knowledge directly from data through a process of discovery, hypothesis, and hypothesis testing.
Data science can be understood as the activities happening in the data layer of the system architecture to extract knowledge from the raw data through the complete data lifecycle. 
The data lifecycle is the set of processes that transform raw data into actionable knowledge.
Traditionally, the term analytics has been used as one of the steps in the data lifecycle of collection, preparation, analysis, and action.
Analytics is the synthesis of knowledge from information.
With the new Big Data paradigm, analytics are no longer separable from the data model and the distribution of that data across horizontally-scaled resources. When structured data was almost exclusively stored as organized information in a relational model, the analytics could be designed for this structure. While our definition of the data science paradigm refers to learning directly from data, in the Big Data paradigm this learning must now implicitly involve all steps in the data lifecycle, with analytics being only a subset. 
Data science is the empirical synthesis of actionable knowledge from raw data through the complete data lifecycle process.
Data science across the entire data lifecycle now incorporates principles, techniques, and methods from many disciplines and domains including the analytics domains of mathematics, data mining (specifically machine learning and pattern recognition), statistics, operations research and visualization, along with the domains of systems, software, and network engineering. Data scientists or data science teams, solve complex data problems by employing deep expertise in one or more of these disciplines, in the context of business strategy and under the guidance of domain knowledge. Personal skills in communication, presentation and inquisitiveness are also very important given the complexity of interactions within Big Data systems.
A data scientist is a practitioner who has sufficient knowledge in the overlapping regimes of business needs, domain knowledge, analytical skills, and software and systems engineering to manage the end-to-end data processes through each stage in the data lifecycle.
While this full collection of skills can be present in a single individual, it is also possible that these skills, as shown in Figure 1, are covered in the members of a team.
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[bookmark: _Toc389169422]Figure 1: Skills Needed in Data Science
Data science is not solely concerned with analytics, but also with the end-to-end experimental lifecycle, where the data system is essentially the scientific equipment. The implication is that the data scientist must be aware of the sources and provenance of the data, the appropriateness and accuracy of the transformations on the data, the interplay between the transformation algorithms and processes, and the data storage mechanisms. This end-to-end overview role ensures that everything is performed correctly to meaningfully address the hypothesis.  These analytics concepts are discussed further in Section 3.4.
Data Science is increasingly used to influence business decisions, tying back to that part of the conceptual space for Big Data. In Big Data systems, identifying a correlation is often sufficient for a business to take action. As a trivial example, if it can be determined that using the color blue on a website leads to greater sales than using green, then this correlation can be used to improve the business. The reason for the preference is not needed; it is enough to determine correlation.
Several issues are currently being debated within the data science community, two of which are data sampling and the idea that more data beats better algorithms. Data sampling, a central concept of statistics, involves the selection of a subset of data from the larger data population. The subset of data can be used as input for analytical processes, or to determine methodology to be used for experimental procedures, or to address questions.  For example, it is possible to calculate the data needed to determine an outcome for an experimental procedure (e.g., during a pharmaceutical clinical trial.) When the data mining community began, the emphasis was typically on re-purposed data (i.e., data used to train models was sampled from a larger dataset that was originally collected for another purpose.) The often overlooked critical step was to ensure that the analytics were not prone to over-fitting (i.e., the analytical pattern matched the data sample but did not work well to answer questions of the overall data population.) In the new Big Data paradigm, it is implied that data sampling from the overall data population is no longer necessary since the Big Data system can theoretically process all the data without loss of performance. However, even if all of the available data is used, it still only represents a population who had behaviors that led them to produce the data, which might not be the true population of interest. For example, studying Twitter data to analyze people’s behaviors doesn’t represent all people, as not everyone uses Twitter. While less sampling may be used in Data Science processes, it is important to be aware of the implicit data sampling when trying to address business questions.
Another data science debate is the assertion that more data beats better algorithms. The heart of this debate states that a few bad data elements are less likely to influence the analytical results in a large dataset than if errors are present in a small sample of that dataset. If the analytics needs are correlation and not causation, then this assertion is easier to justify. Outside the context of large datasets in which aggregate trending behavior is all that matters, the data quality rule remains “garbage-in, garbage-out.” 
For descriptive purposes, analytics activities can be broken into different stages, including discovery, exploratory analysis, correlation analysis, predictive modeling, and machine learning. Again, these analytics categories are not specific to Big Data, but some have gained more visibility due to their greater application in Data Science.
Data science is tightly linked to Big Data, and refers to the management and execution of the end-to-end data processes, including the behaviors of the data system. As such, data science includes all of analytics, but analytics does not include all of data science.

Comparison of Other Big Data Definitions

A number of Big Data definitions have been suggested as we have tried to understand the extent of this new field. Several concepts involved in Big Data have been discussed in the previous two sections. To see how these differing concepts have been singled out Big Data definitions, we looked at a sample of definitions taken from blog posts [10] [11] [12] [13]. These formal and informal definitions give a sense of the spectrum of concepts applied to the term Big Data. The NBD-PWG’s definition is closest to the Gartner definition, with the additional emphasis that it is the horizontal scaling that provides the cost efficiency. The concept characterizations here are not comprehensive, but are meant to illustrate the many inter-related concepts all attributed to the catch-all term Big Data.
	Concept
	Author
	Definition

	3V’s and Engineering
	Gartner [12], [14]
	Big data is high-volume, high-velocity and high-variety information assets that demand cost-effective, innovative forms of information processing for enhanced insight and decision making

	Volume
	Techtarget [10]
	Although Big data doesn't refer to any specific quantity, the term is often used when speaking about petabytes and exabytes of data.

	
	Oxford English Dictionary (OED) [15]
	big data n. Computing (also with capital initials) data of a very large size, typically to the extent that its manipulation and management present significant logistical challenges; (also) the branch of computing involving such data.

	Bigger Data
	Annette Greiner [10]
	Big data is data that contains enough observations to demand unusual handling because of its sheer size, though what is unusual changes over time and varies from one discipline to another

	Not Only Volume
	Quentin Hardy [10]
	What’s “big” in big data isn’t necessarily the size of the databases, it’s the big number of data sources we have, as digital sensors and behavior trackers migrate across the world.

	
	Chris Neumann [10]
	…our original definition was a system that (1) was capable of storing 10 TB of data or more … As time went on, diversity of data started to become more prevalent in these systems (particularly the need to mix structured and unstructured data), which led to more widespread adoption of the “3 Vs” (volume, velocity, and variety) as a definition for big data.

	Big Data Engineering
	IDC [16]
	Big data technologies describe a new generation of technologies and architectures, designed to economically extract value from very large volumes of a wide variety of data, by enabling high-velocity capture, discovery, and/or analysis

	
	Hal Varian [10]
	Big data means data that cannot fit easily into a standard relational database.

	
	McKinsey    [17]
	Big Data refers to a dataset whose size is beyond the ability of typical database software tools to capture, store, manage, and analyze.

	Less Sampling
	John Foreman [10]
	Big data is when your business wants to use data to solve a problem, answer a question, produce a product, etc., …crafting a solution to the problem that leverages the data without simply sampling or tossing out records.

	
	Peter Skomoroch [10]
	Big data originally described the practice in the consumer Internet industry of applying algorithms to increasingly large amounts of disparate data to solve problems that had suboptimal solutions with smaller datasets.

	New Data Types
	Tom Davenport [18]
	“The broad range of new and massive data types that have appeared over the last decade or so.”

	
	Mark van Rijmenam [10]
	Big data is not all about volume, it is more about combining different data sets and to analyze it in real-time to get insights for your organization. Therefore, the right definition of big data should in fact be: mixed data.

	Analytics
	Ryan Swanstrom [10]
	Big data used to mean data that a single machine was unable to handle. Now big data has become a buzzword to mean anything related to data analytics or visualization.

	Data Science
	Joel Gurin [10]
	Big data describes datasets that are so large, complex, or rapidly changing that they push the very limits of our analytical capability. 

	
	Josh Ferguson [10] 
	Big data is the broad name given to challenges and opportunities we have as data about every aspect of our lives becomes available. It’s not just about data though; it also includes the people, processes, and analysis that turn data into meaning.

	Value
	Harlan Harris [10]
	To me, “big data” is the situation where an organization can (arguably) say that they have access to what they need to reconstruct, understand, and model the part of the world that they care about.

	
	Jessica Kirkpatrick [10]
	Big data refers to using complex datasets to drive focus, direction, and decision making within a company or organization.

	
	Hilary Mason [10]
	Big data is just the ability to gather information and query it in such a way that we are able to learn things about the world that were previously inaccessible to us

	
	Gregory Piatetsky-Shapiro [10]
	The best definition I saw is, “Data is big when data size becomes part of the problem.” However, this refers to the size only. Now the buzzword “big data” refers to the new data-driven paradigm of business, science and technology, where the huge data size and scope enables better and new services, products, and platforms.

	Cultural Change
	Drew Conway [10]
	Big data, which started as a technological innovation in distributed computing, is now a cultural movement by which we continue to discover how humanity interacts with the world — and each other — at large-scale.

	
	Daniel Gillick [10]
	 “Big data” represents a cultural shift in which more and more decisions are made by algorithms with transparent logic, operating on documented immutable evidence. I think “big” refers more to the pervasive nature of this change than to any particular amount of data.

	
	Cathy O’Neil [10]
	 “Big data” is more than one thing, but an important aspect is its use as a rhetorical device, something that can be used to deceive or mislead or overhype.


Figure 4: Sampling of Concepts Attributed to Big Data



[bookmark: _Toc385500471][bookmark: _Toc403640420]Big Data Features
Section focus: 
The sample definitions for Big Data given in Section 2.3 demonstrate a number of concepts attributed as being the heart of the new Big Data Paradigm.  In addition many people refer to a long list of “V’s” in addition to the volume, velocity, variety that we discussed in Section 2.1 as being the most important factors. To discuss some of these terms and related concepts in this section to better clarify what is new and what is not new.
[bookmark: _Toc385500472][bookmark: _Toc403640421]Data Elements and Metadata
Subsection focus: Describe different types and characteristics of data
Individual data elements have not changed with Big Data. A list of data types is beyond the scope of this report, and readers are directed to ISO/IEC 11404:2007 General Purpose Datatypes, and for example its extension into healthcare information data types in ISO 21090:2011.
On concept important to Big Data is metadata. Simplistically, metadata is often described as “data about data”. Metadata describes how and when data was collected and how it has been processed. Metadata should itself be viewed as “data” with all the requirements for tracking, changes management, and security as any other data.  While not representing any change because of the new Big Data Paradigm, due to data reuse, metadata is nevertheless an important concept in Big Data. The reader is directed to the Wikipedia page on Metadata (http://en.wikipedia.org/wiki/Metadata_standards) for links to metadata standards in different disciplines. 
Metadata that describes the full history of a dataset is called its provenance, whose importance will be discussed below in Section 3.4 on Analytics. As we move into an era of open data (data available to others) and linked data (data that is connected to other data), it becomes ever more important to have information about how data was collected, transmitted, and processed. This helps ensure correct utilization when data is repurposed from its original collection process to try and extract additional value.
Another specific type of data is Semantic Metadata. Semantic metadata refers to the definitional description of a data element to describe what it means, to ensure it is properly interpreted. A number of mechanisms exist for implementing these unique definitional descriptions, and the reader is referred to the W3C efforts on the Semantic Web for additional information. Semantic data is important in the new Big Data Paradigm since the Semantic Web represents a Big Data attempt to provide meaning for terms across the web. It again is critical especially for linked data efforts.
Vocabularies represent the constraint on values that a data element can take. Taxonomies represent in some sense metadata about data element relationships. Taxonomy is a hierarchical relationship between entities, where a data element is broken down into smaller component parts. While these concepts are important in Big Data, clearly they predated this paradigm shift..
Data Records and Non-Relational Models
Data elements are collected into records that describe a particular observation, event, or transaction. Previously, most of the data in business systems was structured data where each record could be described efficiently in a relational model. We conceptualize records as the rows in a table where data elements are in the cells. Unstructured data types, such as text, image, video, and relationship data, have been increasing in both volume and prominence. The need to analyze unstructured or semi-structured data has been present for many years. However, the Big Data paradigm shift has increased the emphasis on the value of unstructured or relationship data, and in the engineering of the different ways data can be more efficiently handled. 
As we discussed in Section 2.1, Big Data Engineering refers to the new ways data is stored in records. In some cases the records are still in the concept of a table structure. One new storage paradigm is a key-value structure, with a record consisting of a key and a string of data together in the value. The data is retrieved through the key, and the non-relational database software handles accessing the data in the value. A variant on this is the document store, where the document is in the value field, and is again retrieved using the key. The difference is that the value field is indexed, and the document can for example be queried and retrieved through the index.
A fourth type of new Big Data record storage is in a graphical model. A graphical model represents the relationship between data elements. The data elements are nodes, and the relationship is represented as a link between nodes. A simple example would be a node “person” having a relationship “is_an_employee_of” with another node representing a “company”. An ontology can be conceptualized as a graphical model, representing a semantic relationship between entities. Ontologies are semantic models constrained to follow different levels of logic models. Ontologies and semantic models pre-dated Big Data and are beyond the scope of this report. 
Another data element relationship concept that is not new in the paradigm shift, is the presence of complexity between the data elements. There are systems where data elements cannot be analyzed outside the context of other data elements. This is evident, for example, in the analytics for the Human Genome Project, where it is the relationship between the elements and their position and proximity to other elements that matters. The term complexity is often attributed to Big Data, but it refers to this inter-relationship between data elements or across data records independent of whether the dataset has the characteristics of Big Data
[bookmark: _Toc385500473][bookmark: _Toc403640422]Dataset Characteristics and Storage
Subsection focus: What is data at rest, how data at rest is used, advantages and disadvantages of data at rest, how data at rest relates to the NBDRA.
Data records are grouped into datasets, which can have the Big Data characteristics of volume, velocity, and variety. Dataset characteristics can refer to the data itself, while characteristics of the data that is traversing a network or temporarily residing in computer memory to be read or updated is discussed in Section 3.4. Datasets can be archival or reference files that are changed rarely or never. Datasets can be data that is immutable (stored once and never changed) or subject to regular but not constant change. Examples include vital corporate files stored on the hard drive of an employee's laptop, files on an external backup medium, files on the servers of a storage area network (SAN), or files on the servers of an offsite backup service provider. 
Typical characteristics of data at rest that are significantly different in the era of Big Data are the volume and variety. Volume is the characteristic of data at rest that is most associated with Big Data. Estimates show that the amount of data in the world doubles every two years.[endnoteRef:2] Should this trend continue, by 2020, there will be 500 times the amount of data as existed in 2011. The sheer volume of the data is colossal—and the era of a trillion sensors is upon us. These data volumes have stimulated new ways for scalable storage across a collection of horizontally-coupled resources, as described in Section 2.1.  [2:  EMC2. “Digital Universe”, http://www.emc.com/leadership/programs/digital-universe.htm (accessed February 21, 2014). ] 

The second characteristic of data at rest is the increasing need to use a variety of data, meaning the data represents a number of data domains and a number of data types. Traditionally, a variety of data was handled through transformations or pre-analytics to extract features that would allow integration with other data through a relational model. Alternately, a federated database was constructed as a relational database across the underlying relational databases. The wider range of data formats, logical models, timescales, and semantics that are desirous to use in analytics, complicates the integration of the variety of data. For example, data to be integrated could be text from social networks, image data, or a raw feed directly from a sensor source. Big Data engineering has spawned data storage models that are more efficient for unstructured data types than a relational model, causing a derivative issue for the mechanisms to integrate this data. It is possible that the data to be integrated for analytics may be of such volume that it cannot be moved in order to integrate, or it may be that some of the data is not under control of the organization creating the data system. In either case, the variety of Big Data forces a range of new Big Data engineering to efficiently and automatically integrate data that is stored across multiple repositories, in multiple formats, and in multiple logical data models.
Big Data Engineering refers to the new scalable techniques to manage and manipulate this data not in traditional expensive high-performance vertically scaled systems, but by spreading it across a number of less expensive resources. We discussed in Section 3.2 new types of non-relational storage for data records. These non-relational databases use an underlying physical storage for distributing large data flies across multiple resources. <Need description of HDFS and Hadoop and Hadoop 2.0/YARN>
There are additional aspects of Big Data that are changing rapidly and are not fully explored in this document, including the mechanisms for providing communication among the horizontally-coupled resources holding the data in the NoSQL or non-relational models. Some of the communication mechanisms are discussed in Section 4 Big Data Engineering Patterns. Discussion of the use of multiple tiers of storage (e.g., in-memory, cache, solid state drive, hard drive, network drive) in the newly emerging Software Defined Storage can be found in other industry publications. 
Software Defined Storage is the use of software to determine the dynamic allocation of tiers of storage to reduce storage costs while maintaining the required data retrieval performance.
[bookmark: _Toc385500474][bookmark: _Toc403640423]Dataset in Motion
Subsection focus: what is data in motion, advantages and disadvantages of data in motion, how does data in motion relate to the NBDRA.
Another important characteristic of Big Data refers to the time window in which the analysis can take place. Big Data in motion is processed and analyzed in real time, or near-real time, and, therefore, has to be handled in a very different way than persisted data (i.e., data at rest). Big Data in motion tends to resemble event-processing architectures, and focuses on real-time or operational intelligence applications. 
Typical characteristics of data in motion that are significantly different in the era of Big Data are velocity and variability. The velocity is the rate of flow at which the data is created, stored, analyzed, and visualized. Simplistically, this means a large quantity of data is being processed in a short amount of time. In the Big Data era, data is created and passed on in real time or near real time. Data flow rates are increasing, creating new challenges to enable real- or near real-time data usage. Traditionally this concept has been described as streaming data. For some companies, like those in telecommunications, who have been sifting through high volume and short time interval data for years, these aspects are not new. The new horizontal scaling approaches do, however, add new Big Data engineering options for efficiently handling this data.
The second concept for data in motion is variability, which refers to a change in the rate of data flow. Given that many data processes generate a surge in the amount of data arriving in a given amount of time, new techniques are needed to efficiently handle this data. The data processing is often tied up with the automatic provisioning of additional virtualized resources in a cloud environment. Detailed discussions of the techniques used to process data can be found in other industry publications that focus on operational cloud architectures. While Big Data systems are typically deployed on public or private cloud architectures, a Big Data cluster of nodes could just as well be placed on non-virtualized “bare metal” instances. While intimately tied to cloud, Big Data doesn’t require the inherent virtualization that cloud requires. A high velocity system with high variability would be deployed on a cloud infrastructure, because of the cost and performance efficiency of being able to add or remove modes to handle the peak performance. Being able to release those resources when they’re no longer needed can provide a significant cost savings for operating this type of Big Data system.
[bookmark: _Toc385500475][bookmark: _Toc403640424]Big Data Analytics 
Subsection focus: Discuss types of analytic processes (P1), correlation vs. causation in analytics (P2), adaption of analytic tools to BD data repositories (P3), the Big Data characteristics with respect to analytics (P4-P6).
New Big Data engineering technologies change the types of analytics that are possible, but do not result in completely new types of analytics. However, given the retrieval speeds, analysts are able to interact with their data in ways that were not previously possible. The analytic processes are often characterized as discovery for the initial hypothesis formulation, developmental for establishing the analytics process for a specific hypothesis, or applied for the encapsulation of the analysis into an operational system. With Big Data systems, some analytics techniques downsize or summarize the data before you then analyze the data. In Big Data analytics there is often a greater emphasis on the value of correlation. Most traditional analytics in statistics and data mining has focused on causation—being able to describe why something is happening. In some cases, though, knowing the direction of a trend is enough to take action. 
Additional “V’s” has been used to refer to Big Data beyond the volume, velocity, variety and variability that provide the requirements for the system architecture. Some of these terms actually describe analytics on the data.
Veracity refers to the completeness and accuracy of the data and relates to the “garbage-in, garbage-out” data issue that has been around for a long time. If the analytics are causal, then the quality of every data element is critically important. If the analytics are correlations or trending over massive volume datasets, then individual bad elements will be lost in the overall counts and the trend will still be accurate. It’s worth noting, though, that many people debate whether “more data beats better algorithms, but that is a topic better discussed elsewhere.” 
The provenance, or history of the data, is becoming more critical in Big Data analytics, as was discussed in Section 3.1 Data Elements and Metadata, as more and more data is being re-purposed for new types of analytics in completely different disciplines from which the data was created. As the usage of data persists far beyond the control of the data producers, it becomes ever more critical that metadata about the full creation and processing history is made available along with the data.
Another analytics consideration is the speed of interaction between the analytics processes and the person or process responsible for delivering the actionable insight. While the three broadest categories of batch (or offline) processing, online (real-time) processing, and interactive processing are not new, they are a large factor in the choice of architectures and component tools to be used. Given the greater query and analytic speeds within Big Data due to the horizontal scaling, there is an increasing emphasis on the interactive category, and often batch or online processing use the same architectures but differ in the number of resource required. Rapid analytics cycles allow an analyst to do exploratory discovery on the data, browsing more of the data space than might otherwise have been possible in any practical time frame. Time constraints
Batch Analytics Architectures
Even though new types of analytics have not emerged, analytics tools have adapted to run against the horizontally-scaled, non-relational data repositories. One of the mechanisms for this is a ‘divide and conquer’ algorithm known as MapReduce. MapReduce is a method of splitting a query and subsequent analytics tasks into code that runs on the individual data nodes. A corresponding method combines the results from each node into the final result of the query and analytics. This method runs against data stored in the file system paradigm such as HDFS which allows large files to be distributed across nodes.
<weak, and important point that needs more discussion>
Real-time Analytics Architectures
The Big Data characteristic velocity was discussed earlier in Section 3.4, and refers to the rate at which information is flowing into and through the system. Big Data Systems that are architected to handle high velocity data tend to use in-memory solutions to achieve the analytics speeds needed.
<weak, and important point that needs more discussion>

[bookmark: _Toc385500476][bookmark: _Toc403640425]Big Data Metrics
Subsection focus: What to measure with respect to Big Data, how to measure, types of big data metrics, how Big Data metrics differs from regular data metrics.
One of the first questions asked when deciding whether to look at the use of new Big Data Engineering is “How big does my data need to be before I should consider it Big Data”. The unsatisfying answer to this question is that it depends. As we described in Section 2.1, Big Data has characteristics such that you need to use Big Data Engineering techniques in order to have affordable performance in your data system. Answering whether you can gain a performance or cost efficiency for your problem requires a design analysis, and this topic is beyond the scope of this report. 
There is a significant need for metrics and benchmarking to provide standards around how we discuss the performance of Big Data systems. This topic is being addressed by the TCP-xHD Big Data Committee, and information from their efforts will be included in future versions of this report.
[bookmark: _Toc385500477][bookmark: _Toc403640426]Big Data Security and Privacy
Subsection focus: Discussion of important S&P terms such as Big Data characteristics with respect to S&P, …
The security and privacy components and concerns are discussed in the NIST Big Data Interoperability Framework: Volume 4, Security and Privacy Requirements.
<Need to bring in the relevant definitions part here>
[bookmark: _Toc403640427]Data Governance


<Need to address this topic, it is critically important>
[bookmark: _Toc385500478][bookmark: _Toc403640428]Big Data Engineering Patterns (fundamental concepts)
Section focus: Define terms related to the operations between and within NBDRA components, 
To define the differences in Big Data technologies, different ‘scenarios’ and ‘patterns’ are described in this section that illustrate methods related to Big Data characteristics (Section 2.1) and to the NBDRA components found in Volume 6 Reference Architecture. The scenarios describe the high-level functional processes that can be used to categorize and, therefore, better understand the different use cases presented in NIST Big Data Interoperability Framework: Volume 3, Use Cases and General Requirements.  
While the issues surrounding the relaxation of the principles of a relational model in  non-relational systems are very important, their discussion requires a greater scope than afforded by this document and can be found in other industry publications. The main topic areas are listed here as a guide to the conceptual areas where current technical development should be evaluated as the systems are engineered to deploy across nodes.
[bookmark: _Toc385500479][bookmark: _Toc403640429]Data Process Changes for Big Data
As was introduce in section 2.1, the data lifecycle consists of four stages:
1. Collection: results in ‘raw’ data, or data in its original form
2. Preparation: the collection of processes that take raw data and turn it into cleansed, organized information
3. Analysis: the techniques that take organized information and produce synthesized knowledge
4. Action: the processes that take the synthesized or created knowledge and put them to use in the generation of value for the enterprise
In the traditional data warehouse, data was collected, prepared, and then stored. The relational model was designed in a way that optimized the intended analytics. Given the different Big Data characteristics, the ordering of the data handling processes changes as follows:
Data warehouse: persistent storage occurs after data preparation
Big Data volume system: data is stored immediately in raw form before preparation; preparation occurs on read, and is referred to as ‘schema on read’
Big Data velocity application: the collection, preparation, and analytics (alerting) occur on the fly, and possibly includes some summarization or aggregation prior to storage
Just as simulations split the analytical processing across clusters of processors, data processes are redesigned to split data transformations across data nodes. Because the data may be too big to move, the transformation code may be sent in parallel across the data persistence nodes, rather than the data being extracted and brought to the transformation servers. 
[bookmark: _Toc385500481][bookmark: _Toc403640431]Transactions
Transaction processing is a style of computing that divides work into individual, indivisible operations, called transactions. The implementations of relational database management systems (RDBMS) have relied on the enforcement of specific rules on data transactions—that all the steps that update the different tables and relations in a transaction are completed or each step that was completed is reversed so that the database remains in its original state. To maintain the integrity of the database, the transaction either completes all steps or does not complete any of the steps.
Transactions are at the heart of the difference between relational models and non-relational models. While a more thorough analysis and discussion of the patterns in non-relational models are provided in other industry publications, the relational concepts for transactions are included to frame the on-going discussion.
[bookmark: _Toc385500482][bookmark: _Toc403640432]ACID Transactions
Relational databases have traditionally supported the ACID transaction model. ACID transactions are:
Atomic 	Either all of the actions in a transaction are completed (i.e., transaction is committed) or none of them are completed (i.e., transaction is rolled back).
Consistent 	The transaction must begin and end with the database in a consistent state and must comply with all protocols (i.e., rules) of the database.
Isolated 	The transaction will behave as if it is the only operation being performed upon the database.
Durable 	The results of a committed transaction can survive system malfunctions.
The SQL standard defines four transaction isolation levels (i.e., read uncommitted, read committed, repeatable read, and serializable) in terms of three phenomena that could occur between two concurrent transactions, T1 and T2. The three phenomena are:
Dirty Reads: T1 reads data modified by T2 but not yet committed
Unrepeatable reads: T1 rereads data and see effects of data T2 has modified or deleted and committed 
Phantom reads: T1 rereads data and sees data T2 has inserted and committed
The following chart shows for each theoretical isolation level which phenomena are possible.
	Isolation Level
	Dirty Read
	Unrepeatable Read
	Phantom Read

	Read uncommitted
	Yes
	Yes
	Yes

	Read committed
	No
	Yes
	Yes

	Repeatable read
	No
	No
	Yes

	Serializable
	No
	No
	No



SQL implementations support transactions and isolation levels using a variety of mechanisms. These mechanisms typically require some amount of overhead. This overhead is often viewed as an impediment to highly scalable databases.
[bookmark: _Toc385500483][bookmark: _Toc403640433]BASE Transactions
The BASE acronym is often used to describe the types of transactions typically supported by non-relational databases, although its origins reside in early mobile computing. BASE is specifically contrived to be the opposite of ACID. A BASE System is described as follows.
Basically Available 	Data availability is guaranteed by the system with respect to the Brewer’s CAP theorem. While data requests will always receive a response, the response may indicate data in an inconsistent or changing state.
Soft state 	Changes to the system may be continuously occurring, even while not receiving data, thereby creating a state of the system that is in flux (i.e., a soft state.)
Eventually consistent	If input ceases, the system, data item, etc. will eventually reach a consistent state and future access to the system, data item, etc. will return the latest recorded value. 
While ACID transactions must be consistent at the end of the transaction, BASE transactions allow a database to be in a temporarily inconsistent state that will eventually be resolved. This eventual consistency is an important concept in the overall state of a dataset that is distributed across resources.
ACID and BASE transactions represent the two ends of a continuum, where the continuum is in part described by Brewer’s CAP theorem.
[bookmark: _Toc385500484][bookmark: _Toc403640434]Brewer’s CAP Theorem
Distributed Big Data is subject to Brewer’s CAP Theorem, which states that a distributed system can support only two of the following three characteristics:
Consistency	The client perceives that a set of operations has occurred all at once.
Availability	Every operation must terminate in an intended response.
Partition tolerance	Operations will complete, even if individual components are unavailable.
These definitions of consistency, availability, and partition tolerance do not reflect the various interpretations of each term, since Brewer’s presentation of the theorem in 2000, or the complexities encountered when actually applying the theorem to a distributed system or database. 
[bookmark: _Toc385500485][bookmark: _Toc403640435]Read Versus Write Transactions
In many database applications, the ACID transaction characteristics are critical for transactions that write (or modify) one or more rows in one or more tables. For some applications, the ACID transaction properties are also critical for transactions that only read data. For these applications, it is critical for the data to effectively remain unchanged across the life of the transactions.
However, many applications can tolerate changes to the underlying data being read during a transaction. A statistical analysis of a billion rows or documents, for example, is unlikely to be significantly affected by the addition or modification of a small percentage of the underlying data. For these applications, it may be reasonable to operate in a read uncommitted mode.

[bookmark: _Toc385500487][bookmark: _Toc403640439]Storage Medium Architectures
Another area to be explored in the different methods and methodologies for patterns is the use of a broad range of storage capacities. Big Data storage could range from using the spectrum from in-memory techniques, to caching techniques, to local disk, to remote disk, to archival storage. As mentioned in Section 3.2, this is an area that needs to be described with reference to the patterns that are used and the benefits of each.
<weak, and important point that needs more discussion>
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B-1
A
analytics, 7
B
Big Data, 5, 6
Big Data engineering, 5
Big Data paradigm, 4
Big Data velocity application, 14
Big Data volume system, 14
C
complexity, 10
Computational portability, 6
D
data lifecycle, 6
data sampling, 8
data science, 8
data science paradigm, 6
data scientist, 7
data warehouse, 14
F
federated database system, 5
fourth paradigm, 6
M
massively parallel processing, 4
metadata, 10
N
non-relational models, 5NoSQL, 5
O
ontologies, 10
P
provenance, 13

R
relational model, 10
S
Schema-on-read, 6
semantic data, 10
semi-structured data, 10
streaming data, 12
structured data, 10
T
taxonomies, 10
U
unstructured data, 10
V
validity, 8
value, 8
variability, 4
variety, 4
velocity, 10
veracity, 8
volatility, 8
volume, 4
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General Resources
Suggestions for general resources could include the following document types that discuss:
Data elements 
Structured data, unstructured data, and relational model 
Metadata 
Semantic data
Comparison and contrasting of logical data models (from Section 3.2)
Additional aspects of Big Data at rest that can not be fully explored in this document , including the range of persistence mechanisms (e.g., flatfiles, snapshotting , markup, NoSQL models), and the mechanisms for providing communication among the horizontally-coupled resources holding the data in the NoSQL or non-relational models. (from Section 3.2)
Use of multiple tiers of storage (e.g., in-memory, cache, solid state drive, hard drive, network drive) in software defined storage can be found in other industry publications. (from Section 3.2)
Techniques used to process data with respect to operational cloud architectures (from Section 3.3)
More thorough analysis and discussion of the patterns in non-relational models (from Section 4.3)
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